
Math 3013.004

FINAL EXAM
1:00 — 2:50 pm, May 3, 1999

Name:

1. Consider the following linear system

x1 + x2 + x3 − x4 = 6

x2 + x3 = 5

2x1 − x2 + x3 − 2x4 = 3

−x1 + x3 + x4 = 2

(a) (5 pts) Write down the corresponding augmented matrix and reduce it to row-echelon form.

•

⇒




1 1 1 −1
0 1 1 0
2 −1 1 −2
−1 0 1 1

∣∣∣∣∣∣∣∣

6
5
3
2


 −→




1 1 1 −1
0 1 1 0
0 −3 −1 0
0 1 2 0

∣∣∣∣∣∣∣∣

6
5
−9
8




−→




1 1 1 −1
0 1 1 0
0 0 2 0
0 0 1 0

∣∣∣∣∣∣∣∣

6
5
6
3


 −→




1 1 1 −1
0 1 1 0
0 0 1 0
0 0 0 0

∣∣∣∣∣∣∣∣

6
5
3
0




(b) (5 pts) Reduce the augmented matrix further to reduced row-echelon form.

• 


1 1 1 −1
0 1 1 0
0 0 1 0
0 0 0 0

∣∣∣∣∣∣∣∣

6
5
3
0


 −→




1 0 0 −1
0 1 1 0
0 0 1 0
0 0 0 0

∣∣∣∣∣∣∣∣

1
5
3
0


 −→




1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 0

∣∣∣∣∣∣∣∣

1
2
3
0




(c) (5 pts) Use the result of (b) to find the solution of the original linear system.

•

x1 − x4 = 1
x2 = 2
x3 = 3
0 = 0

⇒

x1 = 1 + r

x2 = 2
x3 = 3
x4 = r

where r is an arbitary real number

1



2

2. (10 pts) Compute the inverse of

A =




1 2 1
2 2 1
1 0 1




and verify that you have the correct inverse.

•

⇒




1 2 1
2 2 1
1 0 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


 −→




1 2 1
0 −2 −1
0 −2 0

∣∣∣∣∣∣
1 0 0
−2 1 0
−1 0 1




−→




1 2 1
0 1 1

2

0 0 1

∣∣∣∣∣∣
1 0 0
1 −

1

2
0

1 −1 1


 −→




1 2 0
0 1 0
0 0 1

∣∣∣∣∣∣
0 1 −1
1

2
0 −

1

2

1 −1 1




−→




1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
−1 1 −1
1

2
0 −

1

2

1 −1 1


 ⇒ A

−1 =



−1 1 0
1

2
0 −

1

2

1 −1 1




One verifies that

A
−1
A =



−1 1 0
1

2
0 −

1

2

1 −1 1






1 2 1
2 2 1
1 0 1


 =




1 0 0
0 1 0
0 0 1




3. (10 pts) Find a basis for the solution set of the following homogeneous linear system.

x1 + 2x2 + x3 = 0

x1 + x2 + 3x3 = 0

x2 − 2x3 = 0

• The sollution set is the null space of the following row-equivalent matrices:


1 2 1
1 1 3
0 1 −2


 −→




1 2 1
0 −1 2
0 1 −2


 −→




1 2 1
0 −1 2
0 0 0


 −→




1 0 5
0 1 −2
0 0 0




The null space of the last matrix is given by

x1 +5x3 = 0
x2 − 2x3 = 0

0 = 0
⇒ x =



−5x3
2x3
x3


 ∈ span





−5
2
1





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4.(5 pts) Determine if S = {[x, x+1, y] | x, y ∈ R} is a subspace of R3.

• Consider an arbitary [x,x+ 1, y] element of S. If S is a subspace it must be closed under scalar
multiplication. However, if λ 	= 1 then

λ [x, x+1, y] = [λx,λx+ λ,λy]

Note that the second component of the vector on the right is not 1 plus the first component.
Therefore, it is not in S. Hence, S is not closed under scalar multiplication; and so S is not a
subspace.

5. Consider the following matrix: A =




1 2 2 1
1 3 1 0
1 1 3 2




(a) (5 pts) Find a basis for the column space of A.

• Row reducing A yields


1 2 2 1
1 3 1 0
1 1 3 2




−→




1 2 2 1
0 1 −1 −1
0 −1 1 1




−→




1 2 2 1
0 1 −1 −1
0 0 0 0


 =A′

The pivots of the row-echelon form A′ of A are in the first and second columns, therefore the first
two columns of A form a basis for the column space of A.

ColSp (A) = span






1
1
1


 ,



2
3
1






(b) (5 pts) Find a basis for the row space of A.

The non-zero rows of the row-echelon form A′ of A form a basis for the row space of A. Thus,

RowSp (A) = span ([1, 2, 2, 1] , [0,1,−1,−1])

•

(c) (5 pts) Find a basis for the null space of A.

If we complete the row reduction of A (to reduced row-echelon form) we obtain


1 0 4 3
0 1 −1 −1
0 0 0 0




The solution space to the corresponding linear system is

x1 = −4x3 − 3x4
x2 = x3 + x4

⇒ x =



−4x3 − 3x4
x3 + x4

x3

x4


 = x3



−4
1
1
0


+ x4



−3
1
0
1


 ∈ span






−4
1
1
0


 ,



−3
1
0
1







•
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6. Consider the following mapping: T : R2
→ R

3 : T ([x1, x2]) = [x1 + x2, x1 + 2x2, x1 − x2]

(a) (5 pts) Show that T is a linear transformation.

• Let x = [x1, x2]. Then

T (λx) = T ([λx1, λx2]) = [λx1 + λx2, λx1 + 2λx2, λx1 − λx2] = λ [x1 + x2, x1 +2x2, x1 − x2] = λT (x)

So T preserves scalar multiplication. Let x′ = [x′

1
, x′

2
]. Then

T (x+ x′) = T (x1 + x′

1
, s2 + x′

2
) = [x1 + x1 + x2 + x′

2
, x1 + x′

1
+2 (x2 + x′

2
) , x1 + x1 − (x2 + x′

2
)]

= [x1 + x2, x1 +2x2, x1 − x2] + [x′

1
+ x′

2
, x′

1
+2x′

2
, x′

1
− x′

2
]

= T (x) + T (x′)

So T also preserves vector addition. Since T preserves both scalar multiplication and vector addition
it is a linear transformation.

(b) (5 pts) Find the matrix that represents T .

•

T ([1, 0]) = [1,1,1]
T ([0,1]) = [1, 2,−1]

⇒ AT =




1 1
1 2
1 −1




•

(c) (5 pts) Find a basis for the range of T .

• The range of T will coincide with the column space of AT . Since the two columns of AT are not
constant multiples of one another, they are linearly independent, and hence form a basis for the
column space of A. Thus,

ColSp (A) = span






1
1
1


 ,




1
2
−1






7. (5 pts) Let p1 = 1− 2x+ x
2, p2 = 1− x

2, p3 = 2− 3x+ x
2.. Find a basis for span (p1, p2, p3).

• Using the standard translation of polynomials into numerical vectors we have

1↔ [1, 0, 0]
x↔ [0,1,0]
x
2 ↔ [0,0, 1]

⇒
p1 → [1,−2, 1] = v1
p2 → [1,0,−1] = v2
p3 → [2,−3, 1] = v3

We now find a basis for span (v1,v2,v3).

[v1 | v2 | v3] =A =




1 1 2
−2 0 −3
1 −1 1


 −→




1 1 2
0 2 1
0 −2 −1


 −→




1 1 2
0 2 1
0 0 0




The pivots of last matrix are in the first two columns; therefore, the first two columns ofA are a basis
for the its column space. Hence, v1 and v2 are a basis for span (v1,v2,v3). Hence, p1 = 1− 2x+x

2

and p2 = 1− x
2 are a basis for span (p1, p2, p3).
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8. (5 pts) Compute the determnant of the following matrix.

A =




2 3 4 6
2 0 −9 6
4 1 0 2
0 1 −1 0




• This computation will be simplest if we row reduce A a bit.

det (A) =

∣∣∣∣∣∣∣∣

2 3 4 6
0 3 −13 0
0 −5 −8 −10
0 1 −1 0

∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣
3 −13 0
−5 −8 −10
1 −1 0

∣∣∣∣∣∣− 3

∣∣∣∣∣∣
0 −13 0
0 −8 −10
0 −1 0

∣∣∣∣∣∣+ 4

∣∣∣∣∣∣
0 3 0
0 −5 −10
0 1 −1

∣∣∣∣∣∣− 6

∣∣∣∣∣∣
0 3 −13
0 −5 −8
0 1 −1

The last three determinants on the right vanish because the first columns are filled with zeros. Hence,

det (A) = 2

∣∣∣∣∣∣
3 −13 0
−5 −8 −10
1 −1 0

∣∣∣∣∣∣ = 2

(
3

∣∣∣∣ −8 −10
−1 0

∣∣∣∣ − (−13)

∣∣∣∣ −5 −10
1 0

∣∣∣∣+0

∣∣∣∣ −5 −8
1 −1

∣∣∣∣
)

= (2)(3)(−10) + 2(13)(10) = 200

9. (5 pts) Find the characteristic polynomial of the following matrix.

A =


 −2 0 −1

0 2 0
3 0 2




•

PA (λ) = det (A− λI) =

∣∣∣∣∣∣
−2− λ 0 −1

0 2− λ 0
3 0 2− λ

∣∣∣∣∣∣ = (−2− λ)

∣∣∣∣ 2− λ 0
0 2− λ

∣∣∣∣− 0

∣∣∣∣ 0 0
3 2− λ

∣∣∣∣+ (−1)

∣∣∣∣ 0 2− λ

3 0

= (−2− λ) (2− λ)2 +3 (2− λ) = −2 + λ+ 2λ2 − λ3 = − (λ− 1) (λ− 2) (λ+1)

10. (10 pts) Given that det (A− λI) = − (λ − 1)
2
(λ− 2), find the eigenvalues and eigenvectors of

A =




3 −1 0
3 −1 1
1 −1 2




• The eigenvalues are the roots of the characteristic polynomial det (A− λI); i.e, λ = 1,2. The
eigenspace corresponding to λ = 1 is the null space of

A− (1)I =




2 −1 0
3 −2 1
1 −1 1


 −→




1 0 −1
0 1 −2
1 −1 1


 −→




1 0 −1
0 1 −2
0 −1 2


 −→




1 0 −1
0 1 −2
0 0 0




or the solution space of

x1 − x3 = 0
x2 − 2x3 = 0

0 = 0
⇒ v1 =




x3
2x3
x3


 ∈ span






1
2
1





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The eigenspace corresponding to the root λ = 2 is the null space of the matrix

A− (2)I =




1 −1 0
3 −3 1
1 −1 0


→




1 −1 0
0 0 1
0 0 0




or the solution set of

x1 − x2 = 0
x3 = 0
0 = 0

⇒ v2 =




x2
x2
0


 ∈ span






1
1
0





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11. (10 pts) Find the eigenvalues and eigenvectors of the following linear transformation: T ([x, y]) =
[x+ 2y,2x+ y]

•

AT =

[
1 2
2 1

]
⇒ det (AT − λI) = (1− λ) (1− λ)− 4 = λ

2
− 2λ − 3 = (λ+ 1) (λ − 3)

So the eigenvalues of T are λ = −1,3.
The eigenspace corresponding to the eigenvalue −1 is the null space of AT − (−1)I[

2 2

2 2

]
→

[
1 1

0 0

]
⇒

x1 + x2 = 0

0 = 0
⇒ v

−1 ∈ span

([
−1

1

])

The eigenspace corresponding to the eigenvalue 3 is the null space of AT − (3)I[
−2 2
2 −3

]
→

[
1 −1
0 0

]
⇒

x1 − x2 = 0

0 = 0
⇒ v

−1 ∈ span

([
1
1

])

12. (15 pts) Let A =

[
1 4
0 −3

]
. Find a diagonal matrix D and an invertible matrix C, such that

D = C−1AC.

•

det (A− λI) = (1− λ) (−3− λ) − 0 ⇒ λ = 1,−3

The eigenspace corresponding the eigenvalue λ = 1 is the null space of A− (1)I[
0 4
0 −4

]
−→

[
0 1
0 0

]
⇒

x2 = 0
0 = 0

⇒ v1 =

[
x1
0

]
∈ span

([
1
0

])

The eigenspace corresponding the eigenvalue λ = −3 is the null space of A− (−3)I[
4 4
0 0

]
−→

[
1 1
0 0

]
⇒

x1 + x2 = 0
0 = 0

⇒ v2 =

[
−x2
x2

]
∈ span

([
−1
1

])

So

D =

[
λ1 0
0 λ2

]
=

[
1 0
0 −3

]
, C = [v1 | v2] =

[
1 −1
0 1

]



8

13. (30 pts) Mark each ot the following statements True or False. (Think carefully.)

T (a) If A, B and C are invertible n× n matrices, then AC = BC implies A =B.
—

F (b) If A and B are invertible n × n matrices, then AB = BA implies B =A−1.
—

F (c) If a consistent linear system has more equations than unknowns, then there will be a unique solution.
—

T (d) If a square linear system Ax = 0 has only the trivial solution, then every linear system of the form
Ax = b will have a unique solution.

—

T (e) If p is a solution of Ax = b then every other solution can be written as x = p + h where h is a
solution of the corresponding homogeneous equation.

—

F (f) Every line in R2 is a subspace of R2.
—

F (g) If every vector in a subspaceW of R4 can be represented as a linear combination of vectors v1,v2,v3 ∈
R

4, then v1, v2, and v3 form a basis for W .
—

T (h) A square linear system Ax = b has a unique solution if and only if A is row-equivalent to the
identity matrix.

—

T (i) The dimension of the row space of a matrix is the same as the dimension of the column space.
—

T (j) If {v1, . . . ,vk} is a set of vectors in Rn such every v ∈ R
n can be expressed uniquely as a linear

combination of the form c1v1 + c2v2 + · · ·+ ckvk, then {v1, . . . ,vk} is a basis for Rn.
—

T (k) Every n× n matrix has n not necessarily distinct and possibly complex eigenvectors.
—

F (l) There can be only one eigenvector associated with a given eigenvalue of a linear transformation.
—

T (m) There can be only one eigenvalue associated with a given eigenvector of a linear transformation.
—

T (n) If an n× n matrix is symmetric, then it is diagonalizable.
—

F (o) If the determinant of a matrix is not equal to zero then it is diagonalizable.


