
Math 3013

Homework Set 9

Problems from §5.2 (pgs. 315-317 of text): 1,2,3,4,5,9,10,13

1. (Problems 5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.5 in text) Find the eigenvalues λi, the corresponding eigenvectors vi

of the following matrices. Also find an invertible matrix C and a diagonal matrixD such thatD = C−1AC.

(a) A =

[
−3 4
4 3

]

• First, we calculate the eigenvalues and eigenvectors of A.

0 = det (A− λI) =

∣∣∣∣ −3− λ 4
4 3− λ

∣∣∣∣ = λ2 − 25 = (λ− 5)(λ+ 5) ⇒ λ = 5,−5

The eigenspace corresponding to the eigenvalue λ1 = 5 is the null space of

A− (5)I =

[
−8 4
4 −2

]
�

[
2 −1
0 0

]

or, equivalently, the solution space of

2x1 − x2 = 0
0 = 0

⇒ x =

[
2x2
x2

]
∈ span

([
2
1

])

So the eigenspace corresponding to the eigenvalue λ1 = 5 is the subspace generated by the vector

v1 =

[
2
1

]

The eigenspace corresponding to the eigenvalue λ2 = −5 is the null space of

A− (−5)I =

[
2 4
4 8

]
�

[
1 2
0 0

]

or, equivalently, the solution space of

x1 +2x2 = 0
0 = 0

⇒ x =

[
−1

2
x2

x2

]
∈ span

([
−1

2

1

])
= span

([
1
−2

])

So the eigenspace corresponding to the eigenvalue λ2 = −5 is the subspace generated by the vector

v2 =

[
1
−2

]

Now that we know the eigenvalues and eigenvectors of A, we can write down the diagonal matrix
D by arranging the eigenvalues of A along the main diagonal of D

D =

[
λ1 0
0 λ2

]
=

[
5 0
0 −5

]

The matrix C can be written down by arranging the eigenvectors ofA (in order) as the column vectors
of a 2× 2 matrix:

C = [v1 | v2] =

[
2 1
1 −2

]

One can easily verify that

C
−1 =

[
2

5

1

5
1

5
−

2

5

]

and that D = C
−1
AC (however, this fact is already guaranteed by the way we constructed the

matrices D and C).
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(b) A =

[
3 2
1 4

]

• First, we calculate the eigenvalues and eigenvectors of A.

0 = det (A− λI) =

∣∣∣∣ 3− λ 2
1 4− λ

∣∣∣∣ = λ2
− 7λ+ 10 = (λ− 2)(λ− 5) ⇒ λ = 2, 5

The eigenspace corresponding to the eigenvalue λ1 = 2 is the null space of

A− (2)I =

[
1 2
1 2

]
�

[
1 2
0 0

]

or, equivalently, the solution space of

x1 +2x2 = 0
0 = 0

⇒ x =

[
−2x2
x2

]
∈ span

([
−2
1

])

So the eigenspace corresponding to the eigenvalue λ1 = 2 is the subspace generated by the vector

v1 =

[
−2
1

]

The eigenspace corresponding to the eigenvalue λ2 = 5 is the null space of

A− (5)I =

[
−2 2
1 −1

]
�

[
1 −1
0 0

]

or, equivalently, the solution space of

x1 − x2 = 0
0 = 0

⇒ x =

[
x2
x2

]
∈ span

([
1
1

])

So the eigenspace corresponding to the eigenvalue λ2 = 5 is the subspace generated by the vector

v2 =

[
1
1

]

Now that we know the eigenvalues and eigenvectors of A, we can write down the diagonal matrix
D by arranging the eigenvalues of A along the main diagonal of D

D =

[
λ1 0
0 λ2

]
=

[
2 0
0 5

]

The matrix C can be written down by arranging the eigenvectors ofA (in order) as the column vectors
of a 2× 2 matrix:

C = [v1 | v2] =

[
−2 1
1 1

]

(c) A =

[
7 8
−4 −5

]

• First, we calculate the eigenvalues and eigenvectors of A.

0 = det (A− λI) =

∣∣∣∣ 7− λ 8
−4 −5− λ

∣∣∣∣ = λ2 − 2λ− 3 = (λ − 3)(λ +1) ⇒ λ = 3,−1

The eigenspace corresponding to the eigenvalue λ1 = 3 is the null space of

A− (3)I =

[
4 8
−4 −8

]
�

[
1 2
0 0

]

or, equivalently, the solution space of

x1 +2x2 = 0
0 = 0

⇒ x =

[
−2x2
x2

]
∈ span

([
−2
1

])
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So the eigenspace corresponding to the eigenvalue λ1 = 3 is the subspace generated by the vector

v1 =

[
−2
1

]

The eigenspace corresponding to the eigenvalue λ2 = −1 is the null space of

A− (−1)I =

[
8 8
−4 −4

]
�

[
1 1
0 0

]

or, equivalently, the solution space of

x1 + x2 = 0
0 = 0

⇒ x =

[
−x2
x2

]
∈ span

([
−1
1

])

So the eigenspace corresponding to the eigenvalue λ2 = −1 is the subspace generated by the vector

v2 =

[
−1
1

]

Now that we know the eigenvalues and eigenvectors of A, we can write down the diagonal matrix
D by arranging the eigenvalues of A along the main diagonal of D

D =

[
λ1 0
0 λ2

]
=

[
3 0
0 −1

]

The matrix C can be written down by arranging the eigenvectors ofA (in order) as the column vectors
of a 2× 2 matrix:

C = [v1 | v2] =

[
−2 −1
1 1

]

(d) A =




6 3 −3
−2 −1 2
16 8 −7




• The characteristic polynomial of A is

PA(λ) =

∣∣∣∣∣∣
6− λ 3 −3
−2 −1− λ 2
16 8 −7− λ

∣∣∣∣∣∣
= 3λ − 2λ2 − λ

3 = −λ (λ+3) (λ − 1)

So A has three distinct real eigenvalues: λ1 = 0, λ2 = −3 and λ3 = 1.
The eigenspace corresponding to the first eigenvector λ1 = 0 is the null space of

A− (0)I =




6 3 −3
−2 −1 2
16 8 −7



�




2 1 −1
0 0 1
0 0 0




is the solution set of

2x1 + x2 − x3 = 0
x3 = 0
0 = 0

⇒
x1 = 0
x2 is unfixed
x3 = 0

So the corresponding eigenvectors are

v1 ∈ span






0
1
0






The eigenspace corresponding to the eigenvector λ2 = −3 is the null space of

A− (2)I =




9 3 −3
−2 2 2
16 8 −4



�




3 1 −1
0 2 1
0 0 0



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is the solution set of

3x1 + x2 − x3 = 0
2x2 + x3 = 0
0 = 0

⇒
x1 =

1

2
x3

x2 = −1

2
x3

x3 is unfixed

So the corresponding eigenvectors are

v2 ∈ span






1

2

−1

2

1






The eigenspace corresponding to the first eigenvector λ3 = 1 is the null space of

A− (1)I =




5 3 −3
−2 −2 2
16 8 −8



�




5 3 −3
0 1 −1
0 0 0




is the solution set of

5x1 +3x2 − 3x3 = 0
x2 − x3 = 0
0 = 0

⇒
x1 = 0
x2 = x3
x3 is unfixed

So the corresponding eigenvectors are

v3 ∈ span






0
1
1






From the eigenvalues of A we can now form the diagonal matrix D:

D =




λ1 0 0
0 λ2 0
0 0 λ3


 =




0 0 0
0 −3 0
0 0 1




And from the coresponding eigenvectors we can form the invertible matrix C

C =[v1 | v2 | v3] =




0 1

2
0

1 −1

2
1

0 1 1




such that D =C−1AC.

(e) A =



−3 10 −6
0 7 −6
0 0 1




• The characteristic polynomial of A is

PA(λ) =

∣∣∣∣∣∣
−3− λ 10 −6

0 7− λ −6
0 0 1− λ

∣∣∣∣∣∣
= −(λ +3) (λ − 7) (λ − 1)

So A has three distinct real eigenvalues: λ1 = −3, λ2 = 7 and λ3 = 1.
The eigenspace corresponding to the first eigenvector λ1 = 0 is the null space of

A− (−3)I =




0 10 −6
0 10 −6
0 0 4



�




0 5 −3
0 0 1
0 0 0




is the solution set of

5x2 − 3x3 = 0
x3 = 0
0 = 0

⇒
x1 is unfixed
x2 = 0
x3 = 0



5

So the corresponding eigenvectors are

v1 ∈ span






1
0
0






The eigenspace corresponding to the eigenvector λ2 = 7 is the null space of

A− (7)I =



−10 10 −6
0 0 −6
0 0 −6



�




1 −1 0
0 0 1
0 0 0




is the solution set of

x1 − x2 = 0
x3 = 0
0 = 0

⇒
x1 = x2
x2 is unfixed
x3 = 0

So the corresponding eigenvectors are

v2 ∈ span






1
1
0






The eigenspace corresponding to the first eigenvector λ3 = 1 is the null space of

A− (1)I =



−4 10 −6
0 6 −6
0 0 0



�




1 0 −1
0 1 −1
0 0 0




is the solution set of

x1 − x3 = 0
x2 − x3 = 0
0 = 0

⇒
x1 = x3
x2 = x3
x3 is unfixed

So the corresponding eigenvectors are

v3 ∈ span






1
1
1






From the eigenvalues of A we can now form the diagonal matrix D:

D =




λ1 0 0
0 λ2 0
0 0 λ3


 =



−3 0 0
0 7 0
0 0 1




And from the coresponding eigenvectors we can form the invertible matrix C

C =[v1 | v2 | v3] =




1 1 1
0 1 1
0 0 1




such that D =C−1AC.

2. (Problems 5.2.9 and 5.2.10 in text) Determine whether or not the following matrices are diagonalizable.

(a) A =




1 2 6
2 0 −4
6 −4 3




• Yes, because the matrix is real and symmetric. (See Theorem 5.5 in the text.)

(b) A =




3 1 0
0 3 1
0 0 3



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• Let us calculate the characteristic polynomial of A:

PA(λ) = det (A− λI) =

∣∣∣∣∣∣
3− λ 1 0
0 3− λ 1
0 0 3− λ

∣∣∣∣∣∣
= (3− λ)

3

We thus have only one eigenvalue, λ = 3. The corresponding eigenspace is the null space of

A− (3)I =




0 1 0
0 0 1
0 0 0




or, equivalently, the solution space of

x2 = 0
x3 = 0
0 = 0

⇒ x =




x1
0
0


 ∈ span






1
0
0






So the eigenspace is just 1-dimensional. But we need three linearly independent eigenvectors to
construct the matrix C that diagonalizes A. Hence, A is not diagonalizable.

3. (Problem 5.2.13 in text) Mark each of the following True or False.

(a) Every n× n matrix is diagonalizable.

• False. (An n× n matrix A needs n linearly independent eigenvectors in order to be diagonalizable.)

(b) If an n× n matrix has n distinct real eigenvalues, then it is diagonalizable.

• True. (See Theorem 5.3 in text.)

(c) Every n× n real symmetric matrix is real diagonalizable.

• True. (See Theorem 5.5 in text.)

(d) An n× n matrix is diagonalizable if and only if it has n real eigenvalues.

• False. (If it has n distinct real eigenvalues then it is diagonalizable, however it is not absolutely
necessary that all the eigenvalues are distinct.)

(e) An n×n matrix is diagonalizable if and only if the algebraic multiplicity of each of its eigenvalues equals
the geometric multiplicity.

• True. (See Theorem 5.4 in text.)

(f) Every invertible matrix is diagonalizable.

• False. (Consider

A =




1 0 1
0 1 0
0 0 1




This matrix is invertible since det(A) = 1 �= 0. However, det(A− λI) = (1− λ)3 so there is only one
eigenvalue. The correponding eigenspace is the solution space of (A− I)x = 0 which is generated
by two vectors [1, 0,0] and [0, 1, 0]. However, we need three independent eigenvectors in order to
diagonalize A. Hence, A is invertible but not diagonalizable.)
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(g) Every triagular matrix is diagonalizable.

• False. (See answer to Part (f).)

(h) If A and B are similar matrices and A is diagonalizable, then B is also diagonalizable.

• True.

(i) If an n× n matrix A is diagonalizable, there is a unique diagonal matrix D that is similar to A.

• False. (Suppose λ1, . . . , λn are the eigenvalues of A and v1, . . . ,vn are the corresponding set of
linearly independent eigenvectors. Then arranging the λi along the diagonal of an n × n matrix we
obtain a dialgonalization D of A. However, if we simply changing the ordering of the eigenvalues,
then the same procedure produces a different diagonalization of A.)

(j) If A and B are similar square matrices then det (A) = det (B).

• True. (If A and B are similar, then, by definition, there is an invertible matrix C such that
B = C

−1
AC. But then det (B) = det

(
C
−1
AC

)
= det

(
C
−1

)
det (A) det (C) = det (A) ; since

det
(
C
−1

)
= 1/det (C)).


