
Math 3013

Problem Set 5

Problems from §2.1 (pgs. 134-136 of text): 1,3,11,12,13,16,23

Problems from §2.2 (pgs. 140-141 of text): 1,3,5,7,11

Problems from §2.3 (pgs. 152-154 of text): 1,2,3,4,5,7,13,15,19,29

1. (Problem 2.1.1 in text). Give a geometric criterion for a set of two distinct nonzero vectors in R2 to be
dependent.

• If two vectors v1 and v2 are linearly dependent, then there must exist a solution of

c1v1 + c2v2 = 0

with at least one of the coefficients c1, c2 not zero. Suppose (without loss of generality) that c2 �= 0.
Then c1 can not equal zero either (otherwise we’d have c2v2 = 0 with neither c2 or v2 zero). Then
we can multiply both sides of this equation by 1/c2 to obtain

c1
c2
v1 + v2 = 0 ⇒ v2 = −

c1
c2
v1

So v2 must be a non-zero scalar multiple of v1. But then, this implies that v2 is either parallel (or
anti-parallel) to v1.

2. (Problem 2.1.3 in text). Give a geometric criterion for a set of two distinct nonzero vectors in R3 to be
dependent.

• By exactly the same reasoning we used in Problem 1, we can conclude that if two distinct non-zero
vectors in R3 are dependent then they must be parallel (or anti-parallel).

3. (Problem 2.1.11 in text). Find a basis for the subspace spanned by the vectors [1, 2,1,1], [2, 1, 0,−1], [−1,4,3, 8], [0,3,2,5
R
4.

• First we form a 4× 4 matrix A whose columns correspond to the above set of vectors.

A =




1 2 −1 0
2 1 4 3
1 0 3 2
1 −1 8 5




Now we row-reduce A to row-echelon form.

R2 → R2 − 2R1

R3 → R3 −R1

R4 → R4 −R1
−−−−−−−−−−−−−→




1 2 −1 0
0 −3 6 3
0 −2 4 2
0 −3 9 5




R2 →− 1

3
R2

R3 → R3 −
2

3
R2

R4 → R4 −R2
−−−−−−−−−−−−−→




1 2 −1 0
0 1 −2 −1
0 0 0 0
0 0 3 2




R3 ↔ R4−−−−−−→




1 2 −1 0
0 1 −2 −1
0 0 3 2
0 0 0 0




The pivots of the final matrix (a row-echelon form of A) are in the first three columns. Hence, the
first three columns

{[1, 2,1,1], [2, 1,0,−1], [−1,4,3, 8]}
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of A will form a basis for the column space

ColSp(A) = span ([1,2,1, 1], [2,1,0,−1], [−1, 4, 3,8], [0,3, 2, 5])

4. (Problem 2.1.12 in text). Find a basis for the column space of the matrix

A =




2 3 1
5 2 1
1 7 2
6 −2 0




• We’ll apply the same technique used in Problem 3.


2 3 1
5 2 1
1 7 2
6 −2 0


 →

1 7 2
5 2 1
2 3 1
6 −2 0

→




1 7 2
0 −33 −9
0 −11 −3
0 −44 −12


 →




1 7 2
0 11 −3
0 0 0
0 0 0




The pivots in the row-echelon form ofA are in the first two columns. Therefore, the first two columns
of A

{[2, 5, 1, 6] , [3,2, 7,−2]}

will form a basis for the column space of A.

5. (Problem 2.1.13 in text). Find a basis for the row space of the matrix

A =




1 3 5 7
2 0 4 2
3 2 8 7




The row space of A is the span of the row vectors {[1,3,5,7] , [2.0,4,2] , [3, 2,8,7]} of A To find a basis for
the span of these vectors we arrange them as the columns of a new matrix A′

A
′ =




1 2 3
3 0 2
5 4 8
7 2 7




which happens to be the transpose of our original matrix A. We now row-reduce A′.


1 2 3
3 0 2
5 4 8
7 2 7


 →




1 2 3
0 −6 −7
0 −6 −7
0 −12 −14


 →




1 2 3
0 6 7
0 0 0
0 0 0


 =H

The pivots of H are contained in the first two columns, therefore the first two columns of A′ form a basis
for the column space of A′, which is indentical to row space of our original matrix A. Thus,

{[1, 3, 5,7] , [2,0, 4, 2]}

is a basis for the row space of A.

6. (Problems 2.1.16 and 2.1.23 in text). Determine whether the following sets of vectors are dependent or
independent.

(a) {[1,3] , [−2,−6]} in R2
.

• Let v1 = [1,3] and v2 = [−2,−6] and Note that

2v1 + v2 = 2[1, 3] + [−2,−6] = [0,0]
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so c1 = 2 and c2 = 1 is a non-trivial solution to c1v1 + c2v2 = 0. Thus, v1 and v2 are linearly
dependent.

(b) {[1,−4,3] , [3,−11, 2] , [1,−3,−4]} in R3
.

• Let v1 = [1,−4, 3], v2 = [3,−11,2] and v3 = [1,−3,−4]. We shall look for non-trivial solutions of

0 = c1v1 + c2v2 + c3v3 =

= c1 [1,−4, 3] + c2 [3,−11,2] + c3 [1,−3,−4]

= [c1 + 3c2 + c3,−4c1 − 11c2 − 3c3,3c1 +2c2 − 4c3]

or

c1 +3c2 + c3 = 0(1)

−4c1 − 11c2 − 3c3 = 0

3c1 +2c2 − 4c3 = 0

We thus examine the following augmented matrix

A =




1 3 1
−4 −11 −3
3 2 −4

∣∣∣∣∣∣
0
0
0




Row reducing this matrix yields

→




1 3 1
0 1 1
0 −7 −7

∣∣∣∣∣∣
0
0
0


 →




1 3 1
0 1 1
0 0 0

∣∣∣∣∣∣
0
0
0




Thus, the original system of equations is equivalent to a system of 2 independent equations in 3
unknowns. This means there will be infinitely many (in fact, a one-parameter family of) solutions of
(1). Hence, there are non-trivial solutions so the original set of vectors are linearly independent.

7. (Problems 2.2.1, 2.2.3, and 2.2.5 in text). For each of the following matrices find the rank of the matrix,
a basis for its row space, a basis for its column space, and a basis for its null space.

(a)

A =

[
2 0 −3 1
3 4 2 2

]

Let us first row reduce the given matrix to row-echelon form.

→

[
1 0 −

3

2

1

2

0 4 13

2
−

1

2

]
≡H

The pivots of this matrix lie in columns 1 and 2. Therefore, first two columns of the orginal matrix A will
form a basis for the column space of A.

ColSp (A) = span ([2, 3] , [0,4])

The non-zero rows of the row reduced form H of A will be basis for the row space of A. Hence,

RowSp (A) = span

([
1, 0,

−3

2
,
1

2

]
,

[
0, 4,

13

2
,−

1

2

])
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The null space of A is the solution set of Ax = 0, which coincides with the solution set of Hx = 0, i.e. the
solution set of

x1 −
3

2
x3 +

1

2
x4 = 0

4x2 −
13

2
x3 −

1

2
x4 = 0

⇒
x1 =

3

2
x3 −

1

2
x4

x2 =
13

8
x3 +

1

8
x4

⇒ x =




3

2
x3 −

1

2
x4

13

8
x3 +

1

8
x4

x3
x4


 = x3




3

2
13

8

1
0


+ x4



−

1

2
1

8

0
1




⇒ x ∈ span






3

2
13

8

1
0


 ,


−

1

2
1

8

0
1






so the vectors
{[

3

2
, 13
8
,1, 0

]
,
[
−

1

2
, 1
8
, 0, 1

]}
form a basis for the null space of A. Finally,

rank (A) = dim(ColSp (A)) = dim (RowSp (A)) = 2

(b)

A =




0 6 6 3
1 2 1 1
4 1 −3 4
1 3 2 0




• We proceed as in Part (a). The matrix A is row equivalent to the following matrix in row-echelon
form

H =




1 3 1 1
0 6 6 3
0 0 4 11

2

0 0 0 −19

9




Each column of H contains a pivot; so each column of A is a basis vector for the column space of
A. The matrix H contains no zero rows; so every row of H is a basis vector for the row space of
A. Because the linear system Ax = 0 is equivalent to Hx = 0, and because the latter is evidently
a system of 4 independent equations and 4 unknowns; we shall a unique solution to Ax = 0; namely,
x = 0. Hence, the null space of A is spanned by x = 0 (i.e., it’s zero-dimensional). The rank of A
is equal to the dimension of its column space, which equals the number of vectors in a basis for the
column space, which equals 4.

(c)

A =




0 1 2 1
2 1 0 2
0 2 1 1




• This matrix row-reduces to

H =




2 1 0 2
0 1 2 1
0 0 −3 −1




The pivots of H lie in the first three columns. Therefore, the first three columns of A will be a basis
for the column space of A. Each row of H is non-zero; therefore, each row of H will be a basis vector
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for the row space of A. The solution set of Ax = 0 coincides with the solution set of Hx = 0, or

2x1 + x2 +2x4 = 0
x2 + 2x3 + x4 = 0
−3x3 − x4 = 0

⇒

x1 = −
5

6
x4

x2 = −
1

3
x4

x3 = −
1

3
x4

So every solution is a vector of the form

x =



−

5

6
x4

−
1

3
x4

−
1

3
x4

x4


 = x4



−

5

6

−
1

3

−
1

3

1


 ∈ span






−

5

6

−
1

3

−
1

3

1







Thus,
{[
−

5

6
,−1

3
,−1

3
,1
]}

is a basis for the null space of A. The rank of A is equal to the number of
basis vectors for the column space of A, which is 3.

8. (Problem 2.2.7 in text). Determine whether the following matrix is invertible, by finding its rank.

A =




0 −9 −9 2
1 2 1 1
4 1 −3 4
1 3 2 0




• This matrix is row equivalent to

H =




1 2 1 1
0 −9 −9 2
0 0 0 −

7

9

0 0 0 0




The rank of A is equal to the dimension of its row space, which is equal to the number of non-zero
rows in a row-echelon form of A. Hence, rank(A) = 3. This implies that the dimension of the null
space of A is 1 since

# of columns of A =rank (A) − dim(null space of A)

Hence, the matrix is not invertible, since it rank does does equal its number of columns (See Theorem
2.6 in text.)

9. (Problem 2.2.11 in text). Determine whether the following statements are true or false.

(a) The number of independent row vectors in a matrix is the same as the number of independent column
vectors.

• True. This number is the rank of a matrix.

(b) If H is a row-echelon form of a matrix A, then the nonzero column vectors of H form a basis for the
column space of A.

• False. It is the columns of A that corresponding to column vectors of H that contain pivots that form
a basis for the column space of A.

(c) If H is a row-echelon form of a matrix A, then the nonzero row vectors of H from a basis for the row
space of A.

• True.

(d) If an n× n matrix A is invertible then rank (A) = n.
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• True. (See Theorem 2.6 in text.)

(e) For every matrix A we have rank(A) > 0.

• False. The rank of a zero matrix will be zero.

(f) For all positive integers m and n, the rank of an m × n matrix might be any number from 0 to the
maximum of m and n.

• False. We have

n = # of columns = rank +dim(null space)

or

rank = n − dim(null space) ≤ n

(g) For all positive integers m and n, the rank of an m × n matrix might be any number from 0 to the
minimum of m and n.

• True. As in Part (f) we have

rank = n − dim(null space) ≤ n

Now if n > m, then the equationAx = 0, would correspond to a consistent linear system with (n−m)
more variables (n) then equations (m). Hence, the dimension of the null space would be at least n−m.
In fact, the dimension of the null space could be as large as n (which would happen, e.g. if the matrix
contained all zeros).

Hence, if m < n,

n−m ≤ dim (null space) ≤ n

Hence

0 = n− n ≤ rank ≤ n− (m− n) =m = min(m,n)

On the other hand, if m ≥ n, then we dimension of the null space can be as small as 0 (because we
will have nore equations than unknowns). The maximum dimension of the null space will still be n
(again corresponding to the dimension of the null space of the zero matrix). Thus, if m ≥ n

0 ≤ dim (null space) ≤ n = n

Hence,

0 = n − n ≤ rank ≤ n − 0 = n =min(m,n)

We conclude

0 ≤ rank ≤min(m,n)

(h) For all positive integers m and n, the nullity of an m× n matrix might be any number from 0 to n.

• False. In Part (g) we showed

0 ≤ rank ≤min(m,n)

But

dim(null space) = # of columns − rank

= n− rank
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So

n−min (m,n) ≤ dim (null space) ≤ n− 0 = n

Since n−min (m,n) �= 0 if m < n, the statement is false.

(i) For all positive integers m and n, the nullity of an m× n matrix might be any number from 0 to m.

• False. As we argued in Part (h),

n−min (m,n) ≤ dim(null space) ≤= n

Since, n−min (m,n) �= 0 if m < n, the statement is false (the upper boudn is also wrong).

(j) For all positive integersm and n, with m ≥ n, the nullity of an m×n matrix might be any number from
0 to n.

• True. In Part (h) we found

n−min (m,n) ≤ dim (null space) ≤ n− 0 = n

But if m ≥ n, then n−min (m,n) = 0, and so we have

0 ≤ dim (null space) ≤ n

10. (Problems 2.3.1, 2.3.2, 2.3.3, and 2.3.4 in text). Determine which of the following mappings are linear
transformations.

(a) T : R3 → R
2 : T ([x1, x2, x3]) = [x1 + x2, x1 − 3x2]

• This mapping is linear since if v =[x1, x2, x3]

T (λv) = T (λ [x1, x2, x3])

= T ([λx1, λx2, λx3])

= [λx1 + λx2, λx1 − 3λx2]

= λ [x1 + x2, x1 − 3x2]

= λT ([x1, x2, x3])

= λT (v) (T preserves scalar multiplication)

and if v =[x1, x2, x3] and v
′=[x′

1
, x′

2
, x′

3
]

T (v + v
′) = T ([x1 + x′

1
, x2 + x′

2
, x3 + x′

3
])

= [x1 + x′

1
+ x2 + x′

2
, x1 + x′

1
− 3(x2 − x′

2
)]

= [x1 + x2, x1 − 3x2] + [x′

1
+ x′

2
, x′

1
− 3x′

2
]

= T (v) + T (v′) (T preserves vector addition)

(b) T : R3 → R
4 : T ([x1, x2, x3]) = [0,0, 0, 0]
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• This mapping is linear since if v =[x1, x2, x3]

T (λv) = T ([λx1, λx2, λx3])

= [0,0,0, 0]

= λ [0,0, 0, 0]

= λT ([x1, x2, x3])

= λT (v) (T preserves scalar multiplication)

and if v =[x1, x2, x3] and v
′=[x′

1
, x′

2
, x′

3
]

T (v + v
′) = T ([x1 + x′

1
, x2 + x′

2
, x3 + x′

3
])

= [0, 0, 0,0]

= [0, 0, 0,0] + [0, 0,0,0]

= T (v) + T (v′) (T preserves vector addition)

(c) T : R3 → R
4 : T ([x1, x2, x3]) = [1, 1,1,1]

• This mapping is not linear since if v = [x1, x2, x3]

T (v) = [1,1,1, 1]

T (2v) = [1,1,1, 1] �= 2 [1, 1, 1,1] = 2T (v)

So the mapping does not preserve scalar multiplication.

(d) T : R2 → R
3 : T ([x1, x2]) = [x1 − x2, x2 +1, 3x1 − 2x2]

• This mapping is not linear since, e.g., if v =[1, 1, 1]

T (v) = [0, 2,1]

T (2v) = T ([2,2,2]) = [0, 3, 2] �= [0,4,2] = 2T (v)

So the mapping does not preserve scalar multiplication.

11. (Problems 2.3.5 and 2.3.7 in text). For each of the following, assume T is a linear transformation, from
the data given, compute the specified value.

(a) Given T ([1, 0]) = [3,−1], and T ([0, 1]) = [−2, 5], find T ([4,−6]).

• Because linear transformations preserve scalar multiplication and vector addition, they also preserve
linear combinations:

T (c1v1 + c2v2) = c1T (v1) + c2T (v2)

Now take e1 = [1, 0] and e2 = [0,1]. Then

T ([4,−6]) = T (4e1 − 6e2)

= 4T (e1)− 6T (e2)

= 4 [3,−1]− 6 [−2,5]

= [12 + 12,−4− 30]

= [24,−34]

(b) Given T ([1,0,0]) = [3, 1,2], T ([0, 1, 0]) = [2,−1, 4], and T ([0,0,1]) = [6, 0, 1], find T ([2,−5, 1]).
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• As in Part (a), we set e1 = [1, 0, 0], e2 = [0,1,0], and e3 = [0,0,1] and then compute

T ([2,−5,1]) = T (2e1 − 5e2 + e3)

= 2T (e1)− 5T (e2) + T (e3)

= 2 [3, 1, 2]− 5 [2,−1, 4] + [6, 0, 1]

= [6− 10 + 6, 2 + 5 + 0, 4− 20 + 1]

= [2,7,−15]

12. (Problems 2.3.13 and 2.3.15 in text). Find the standard matrix representations of the following linear
transformations.

(a) T ([x1, x2]) = [x1 + x2, x1 − 3x2]

• The standard matrix representations are computed by computing the action of the linear transfor-
mation T on the standard basis vectors, and then using results as the columns of the corresponding
matrix. For the case at hand we have

e1 = [1,0] ⇒ T (e1) = [1 + 0, 1− 3(0)] = [1, 1]

e2 = [0,1] ⇒ T (e2) = [0 + 1, 0− 3(1)] = [1,−3]

So the matrix corresponding to T is [
1 1
1 −3

]

(b) T ([x1, x2, x3]) = [x1 + x2 + x3, x1 + x2, x1]

• We proceed as in Part (a).

e1 = [1,0,0] ⇒ T (e1) = [1 + 0 + 0,1 + 0, 1] = [1,1,1]

e2 = [0,1,0] ⇒ T (e2) = [0 + 1 + 0,0 + 1, 0] = [1,1,0]

e3 = [0,0,1] ⇒ T (e3) = [0 + 0 + 1,0 + 0, 0] = [1,0,0]

So the matrix corresponding to T is

1 1 1
1 1 0
1 0 0

13. (Problem 2.3.19 in text). If T : R2
→ R

3 is defined by T ([x1,
x2]) = [2x1 + x2, x1, x1 − x2] and

T ′ : R3
→ R

2 is defined by T ′ ([x1, x2, x3]) = [x1 − x2 + x3, x1 + x2], find the standard matrix representation
for the linear transformation T ′

◦ T that carries R2 into R2. Find a formula for (T ′
◦ T ) ([x1, x2]).

• The matrix representations corresponding to T and T ′ are

MT =


 2 1

1 0

1 −1


 , MT ′ =

[
1 −1 1

1 1 0

]
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The matrix representation corresponding to T ′
◦ T will be given by the product of the corresponding

matrices

MT ′
◦T =MT ′MT =

[
1 −1 1

1 1 0

] 2 1
1 0
1 −1


 =

[
2 0
3 1

]

Hence

(T ′
◦ T ) (x1, x2) = [2x1,3x1 + x2]

:

14. (Problem 2.3.29 in text). Determine whether the following statements are true or false.

(a) Every linear transformation is a function.

• True.

(b) Every function mapping Rn to Rm is a linear transformation.

• False. In order to be a linear transformation a function f : Rn → R
m must preserve scalar multipli-

cation and vector addtion.

(c) Composition of linear transformations corresponds to multiplication of their standard matrix represen-
tations.

• True.

(d) Function composition is associative.

• True.

(e) An invertible linear transformation mapping Rn to itself has a unique inverse.

• True. (This follows from the corresponding theorem about invertible matrices.)

(f) The same matrix may be the standard matrix representation for several different linear transformations.

• False. (Unless one allows more general vector spaces - but idea won’t be broached until Chapter
3.)

(g) A linear transformation having an m × n matrix as its standard matrix representation maps Rn into
R
m.

• True.

(h) If T and T ′ are different linear transformations mapping Rn into Rm, then we may have T (ei) = T ′ (ei)
for all standard basis vectors ei of R

n.

• False. Linear transformations are determined uniquely by their standard matrix representations.

(i) If T and T ′ are different linear transformations mapping Rn into Rm, then we may have T (ei) = T ′ (ei)
for some standard basis vectors ei of R

n.



11

• True. (So long as they are not all the same.)

(j) If B = {b1,b2, . . . ,bn} is a basis for Rn and T and T ′ are linear transformations from R
n into Rm,

then T (x) = T ′ (x) for all x ∈ Rn if and only if T (bi) = T ′ (bi) for i = 1,2, . . . , n.

• True.


