Math 3013 Problem Set 5

Problems from §2.1 (pgs. 134-136 of text): 1,3,11,12,13,16,23

Problems from §2.2 (pgs. 140-141 of text): 1,3,5,7,11

Problems from §2.3 (pgs. 152-154 of text): 1,2,3,4,5,7,13,15,19,29

1. (Problem 2.1.1 in text). Give a geometric criterion for a set of two distinct nonzero vectors in \mathbb{R}^2 to be dependent.

• If two vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly dependent, then there must exist a solution of

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{0}$$

with at least one of the coefficients c_1, c_2 not zero. Suppose (without loss of generality) that $c_2 \neq 0$. Then c_1 can not equal zero either (otherwise we'd have $c_2\mathbf{v}_2 = \mathbf{0}$ with neither c_2 or \mathbf{v}_2 zero). Then we can multiply both sides of this equation by $1/c_2$ to obtain

$$\frac{c_1}{c_2}\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{0} \quad \Rightarrow \quad \mathbf{v}_2 = -\frac{c_1}{c_2}\mathbf{v}_1$$

So \mathbf{v}_2 must be a non-zero scalar multiple of \mathbf{v}_1 . But then, this implies that \mathbf{v}_2 is either parallel (or anti-parallel) to \mathbf{v}_1 .

2. (Problem 2.1.3 in text). Give a geometric criterion for a set of two distinct nonzero vectors in \mathbb{R}^3 to be dependent.

• By exactly the same reasoning we used in Problem 1, we can conclude that if two distinct non-zero vectors in ℝ³ are dependent then they must be parallel (or anti-parallel).

3. (Problem 2.1.11 in text). Find a basis for the subspace spanned by the vectors $[1, 2, 1, 1], [2, 1, 0, -1], [-1, 4, 3, 8], [0, 3, 2, \mathbb{R}^4$.

• First we form a 4×4 matrix **A** whose columns correspond to the above set of vectors.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 2 & 1 & 4 & 3 \\ 1 & 0 & 3 & 2 \\ 1 & -1 & 8 & 5 \end{bmatrix}$$

Now we row-reduce \mathbf{A} to row-echelon form.

$$\begin{array}{c} R_2 \to R_2 - 2R_1 \\ R_3 \to R_3 - R_1 \\ R_4 \to R_4 - R_1 \end{array} \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 6 & 3 \\ 0 & -2 & 4 & 2 \\ 0 & -3 & 9 & 5 \end{bmatrix} \begin{array}{c} R_2 \to -\frac{1}{3}R_2 \\ R_3 \to R_3 - \frac{2}{3}R_2 \\ R_4 \to R_4 - R_2 \end{array} \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 2 \end{bmatrix} \\ \\ \hline R_3 \leftrightarrow R_4 \end{array}$$

The pivots of the final matrix (a row-echelon form of \mathbf{A}) are in the first three columns. Hence, the first three columns

$$\{[1,2,1,1],[2,1,0,-1],[-1,4,3,8]\}$$

of ${\bf A}$ will form a basis for the column space

$$ColSp(\mathbf{A}) = span([1,2,1,1], [2,1,0,-1], [-1,4,3,8], [0,3,2,5])$$

4. (Problem 2.1.12 in text). Find a basis for the column space of the matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 2 & 1 \\ 1 & 7 & 2 \\ 6 & -2 & 0 \end{bmatrix}$$

• We'll apply the same technique used in Problem 3.

2	3	1]	1	7	2		1	7	2		1	7	2]
5	2	1		5	2	1		0	-33	-9		0	11	-3
1	7	2	\rightarrow	2	3	1	\rightarrow	0	-11	-3	\rightarrow	0	0	0
6	-2	0		6	-2	0		0	-44	-12		0	0	0

The pivots in the row-echelon form of A are in the first two columns. Therefore, the first two columns of A

$$\{[2,5,1,6], [3,2,7,-2]\}$$

will form a basis for the column space of **A**.

5. (Problem 2.1.13 in text). Find a basis for the row space of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 0 & 4 & 2 \\ 3 & 2 & 8 & 7 \end{bmatrix}$$

The row space of **A** is the span of the row vectors $\{[1,3,5,7], [2.0,4,2], [3,2,8,7]\}$ of **A** To find a basis for the span of these vectors we arrange them as the columns of a new matrix **A**'

$$\mathbf{A}' = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & 2 \\ 5 & 4 & 8 \\ 7 & 2 & 7 \end{bmatrix}$$

which happens to be the transpose of our original matrix \mathbf{A} . We now row-reduce \mathbf{A}' .

1	2	3		1	2	3		1	2	3 -]
3	0	2		0	-6	-7		0	6	$\overline{7}$	_ ப
5	4	8	\rightarrow	0	-6	-7	\rightarrow	0	0	0	
7	2	$\overline{7}$		0	-12	-14		0	0	0	

The pivots of \mathbf{H} are contained in the first two columns, therefore the first two columns of \mathbf{A}' form a basis for the column space of \mathbf{A}' , which is indentical to row space of our original matrix \mathbf{A} . Thus,

$$\left\{ \left[1,3,5,7\right] ,\left[2,0,4,2\right] \right\}$$

is a basis for the row space of **A**.

6. (Problems 2.1.16 and 2.1.23 in text). Determine whether the following sets of vectors are dependent or independent.

(a) $\{[1,3], [-2,-6]\}$ in \mathbb{R}^2 .

• Let $\mathbf{v}_1 = [1,3]$ and $\mathbf{v}_2 = [-2,-6]$ and Note that

$$2\mathbf{v}_1 + \mathbf{v}_2 = 2[1,3] + [-2,-6] = [0,0]$$

so $c_1 = 2$ and $c_2 = 1$ is a non-trivial solution to $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{0}$. Thus, \mathbf{v}_1 and \mathbf{v}_2 are linearly dependent.

(b)
$$\{[1, -4, 3], [3, -11, 2], [1, -3, -4]\}$$
 in \mathbb{R}^3 .

• Let $\mathbf{v}_1 = [1, -4, 3]$, $\mathbf{v}_2 = [3, -11, 2]$ and $\mathbf{v}_3 = [1, -3, -4]$. We shall look for non-trivial solutions of

$$0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = = c_1 [1, -4, 3] + c_2 [3, -11, 2] + c_3 [1, -3, -4] = [c_1 + 3c_2 + c_3, -4c_1 - 11c_2 - 3c_3, 3c_1 + 2c_2 - 4c_3]$$

or

(1)

$$c_1 + 3c_2 + c_3 = 0$$

 $-4c_1 - 11c_2 - 3c_3 = 0$
 $3c_1 + 2c_2 - 4c_3 = 0$

We thus examine the following augmented matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 1 & | & 0 \\ -4 & -11 & -3 & | & 0 \\ 3 & 2 & -4 & | & 0 \end{bmatrix}$$

Row reducing this matrix yields

_

$$\rightarrow \begin{bmatrix} 1 & 3 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & -7 & -7 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Thus, the original system of equations is equivalent to a system of 2 independent equations in 3 unknowns. This means there will be infinitely many (in fact, a one-parameter family of) solutions of (1). Hence, there are non-trivial solutions so the original set of vectors are linearly independent. \Box

7. (Problems 2.2.1, 2.2.3, and 2.2.5 in text). For each of the following matrices find the rank of the matrix, a basis for its row space, a basis for its column space, and a basis for its null space.

(a)

$$\mathbf{A} = \left[\begin{array}{rrrr} 2 & 0 & -3 & 1 \\ 3 & 4 & 2 & 2 \end{array} \right]$$

Let us first row reduce the given matrix to row-echelon form.

$$\rightarrow \begin{bmatrix} 1 & 0 & -\frac{3}{2} & \frac{1}{2} \\ 0 & 4 & \frac{13}{2} & -\frac{1}{2} \end{bmatrix} \equiv \mathbf{H}$$

The pivots of this matrix lie in columns 1 and 2. Therefore, first two columns of the orginal matrix \mathbf{A} will form a basis for the column space of \mathbf{A} .

$$ColSp(\mathbf{A}) = span([2,3],[0,4])$$

The non-zero rows of the row reduced form \mathbf{H} of \mathbf{A} will be basis for the row space of \mathbf{A} . Hence,

$$RowSp\left(\mathbf{A}\right) = span\left(\left[1, 0, \frac{-3}{2}, \frac{1}{2}\right], \left[0, 4, \frac{13}{2}, -\frac{1}{2}\right]\right)$$

4

The null space of A is the solution set of Ax = 0, which coincides with the solution set of Hx = 0, i.e. the solution set of

$$\begin{aligned} x_{1} - \frac{3}{2}x_{3} + \frac{1}{2}x_{4} &= 0 \\ 4x_{2} - \frac{13}{2}x_{3} - \frac{1}{2}x_{4} &= 0 \end{aligned} \Rightarrow \begin{aligned} x_{1} &= \frac{3}{2}x_{3} - \frac{1}{2}x_{4} \\ x_{2} &= \frac{13}{8}x_{3} + \frac{1}{8}x_{4} \\ x_{3} &= \begin{bmatrix} \frac{3}{2}x_{3} - \frac{1}{2}x_{4} \\ \frac{13}{8}x_{3} + \frac{1}{8}x_{4} \\ x_{4} \end{bmatrix} = x_{3} \begin{bmatrix} \frac{3}{2} \\ \frac{13}{8} \\ 1 \\ 0 \end{bmatrix} + x_{4} \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{8} \\ 0 \\ 1 \end{bmatrix} \end{aligned}$$
$$\Rightarrow \qquad \mathbf{x} \in span \left(\begin{bmatrix} \frac{3}{2} \\ \frac{13}{8} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{8} \\ 0 \\ 1 \end{bmatrix} \right)$$

so the vectors $\left\{ \left[\frac{3}{2}, \frac{13}{8}, 1, 0\right], \left[-\frac{1}{2}, \frac{1}{8}, 0, 1\right] \right\}$ form a basis for the null space of **A**. Finally,

$$rank(\mathbf{A}) = \dim(ColSp(\mathbf{A})) = \dim(RowSp(\mathbf{A})) = 2$$

(b)

$$\mathbf{A} = \begin{bmatrix} 0 & 6 & 6 & 3\\ 1 & 2 & 1 & 1\\ 4 & 1 & -3 & 4\\ 1 & 3 & 2 & 0 \end{bmatrix}$$

• We proceed as in Part (a). The matrix **A** is row equivalent to the following matrix in row-echelon form

$$\mathbf{H} = \begin{bmatrix} 1 & 3 & 1 & 1 \\ 0 & 6 & 6 & 3 \\ 0 & 0 & 4 & \frac{11}{2} \\ 0 & 0 & 0 & \frac{-19}{9} \end{bmatrix}$$

Each column of **H** contains a pivot; so each column of **A** is a basis vector for the column space of **A**. The matrix **H** contains no zero rows; so every row of **H** is a basis vector for the row space of **A**. Because the linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ is equivalent to $\mathbf{H}\mathbf{x} = \mathbf{0}$, and because the latter is evidently a system of 4 independent equations and 4 unknowns; we shall a unique solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$; namely, $\mathbf{x} = \mathbf{0}$. Hence, the null space of **A** is spanned by $\mathbf{x} = \mathbf{0}$ (i.e., it's zero-dimensional). The rank of **A** is equal to the dimension of its column space, which equals the number of vectors in a basis for the column space, which equals 4.

(c)

$$\mathbf{A} = \left[\begin{array}{rrrr} 0 & 1 & 2 & 1 \\ 2 & 1 & 0 & 2 \\ 0 & 2 & 1 & 1 \end{array} \right]$$

• This matrix row-reduces to

$$\mathbf{H} = \begin{bmatrix} 2 & 1 & 0 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & -3 & -1 \end{bmatrix}$$

The pivots of \mathbf{H} lie in the first three columns. Therefore, the first three columns of \mathbf{A} will be a basis for the column space of \mathbf{A} . Each row of \mathbf{H} is non-zero; therefore, each row of \mathbf{H} will be a basis vector

for the row space of A. The solution set of Ax = 0 coincides with the solution set of Hx = 0, or

$$\begin{array}{ll} 2x_1 + x_2 + 2x_4 = 0 & x_1 = -\frac{5}{6}x_4 \\ x_2 + 2x_3 + x_4 = 0 & \Rightarrow & x_2 = -\frac{1}{3}x_4 \\ -3x_3 - x_4 = 0 & x_3 = -\frac{1}{3}x_4 \end{array}$$

So every solution is a vector of the form

$$\mathbf{x} = \begin{bmatrix} -\frac{5}{6}x_4\\ -\frac{1}{3}x_4\\ -\frac{1}{3}x_4\\ x_4 \end{bmatrix} = x_4 \begin{bmatrix} -\frac{5}{6}\\ -\frac{1}{3}\\ -\frac{1}{3}\\ 1 \end{bmatrix} \in span\left(\begin{bmatrix} -\frac{5}{6}\\ -\frac{1}{3}\\ -\frac{1}{3}\\ 1 \end{bmatrix} \right)$$

Thus, $\left\{\left[-\frac{5}{6}, -\frac{1}{3}, -\frac{1}{3}, 1\right]\right\}$ is a basis for the null space of **A**. The rank of **A** is equal to the number of basis vectors for the column space of **A**, which is 3.

8. (Problem 2.2.7 in text). Determine whether the following matrix is invertible, by finding its rank.

$$\mathbf{A} = \begin{bmatrix} 0 & -9 & -9 & 2 \\ 1 & 2 & 1 & 1 \\ 4 & 1 & -3 & 4 \\ 1 & 3 & 2 & 0 \end{bmatrix}$$

• This matrix is row equivalent to

$$\mathbf{H} = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & -9 & -9 & 2 \\ 0 & 0 & 0 & -\frac{7}{9} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The rank of \mathbf{A} is equal to the dimension of its row space, which is equal to the number of non-zero rows in a row-echelon form of \mathbf{A} . Hence, $rank(\mathbf{A}) = 3$. This implies that the dimension of the null space of \mathbf{A} is 1 since

of columns of
$$\mathbf{A} = \operatorname{rank}(\mathbf{A}) - \dim(\operatorname{null space of } \mathbf{A})$$

Hence, the matrix is not invertible, since it rank does does equal its number of columns (See Theorem 2.6 in text.) \Box

9. (Problem 2.2.11 in text). Determine whether the following statements are true or false.

(a) The number of independent row vectors in a matrix is the same as the number of independent column vectors.

• True. This number is the rank of a matrix.

(b) If \mathbf{H} is a row-echelon form of a matrix \mathbf{A} , then the nonzero column vectors of \mathbf{H} form a basis for the column space of \mathbf{A} .

• False. It is the columns of \mathbf{A} that corresponding to column vectors of \mathbf{H} that contain pivots that form a basis for the column space of \mathbf{A} .

(c) If \mathbf{H} is a row-echelon form of a matrix \mathbf{A} , then the nonzero row vectors of \mathbf{H} from a basis for the row space of \mathbf{A} .

(d) If an $n \times n$ matrix **A** is invertible then $rank(\mathbf{A}) = n$.

- True. (See Theorem 2.6 in text.)
- (e) For every matrix **A** we have $rank(\mathbf{A}) > 0$.
 - False. The rank of a zero matrix will be zero.

(f) For all positive integers m and n, the rank of an $m \times n$ matrix might be any number from 0 to the maximum of m and n.

• False. We have

or

$$n = \#$$
 of columns = $rank + \dim$ (null space)
 $rank = n - \dim$ (null space) $\leq n$

(g) For all positive integers m and n, the rank of an $m \times n$ matrix might be any number from 0 to the minimum of m and n.

• True. As in Part (f) we have

 $rank = n - \dim (\text{null space}) \le n$

Now if n > m, then the equation $\mathbf{Ax} = \mathbf{0}$, would correspond to a consistent linear system with (n-m) more variables (n) then equations (m). Hence, the dimension of the null space would be at least n-m. In fact, the dimension of the null space could be as large as n (which would happen, e.g. if the matrix contained all zeros).

Hence, if m < n,

$$n-m \le \dim (\text{null space}) \le n$$

Hence

$$0 = n - n \le rank \le n - (m - n) = m = \min(m, n)$$

On the other hand, if $m \ge n$, then we dimension of the null space can be as small as 0 (because we will have nore equations than unknowns). The maximum dimension of the null space will still be n (again corresponding to the dimension of the null space of the zero matrix). Thus, if $m \ge n$

$$0 \le \dim$$
 (null space) $\le n = n$

Hence,

$$0 = n - n \le rank \le n - 0 = n = \min(m, n)$$

We conclude

$$0 \le rank \le \min(m, n)$$

(h) For all positive integers m and n, the nullity of an $m \times n$ matrix might be any number from 0 to n.

• False. In Part (g) we showed

$$0 \le rank \le \min(m, n)$$

But

dim (null space) =
$$\#$$
 of columns $-rank$
= $n - rank$

 \mathbf{So}

$$n - \min(m, n) \le \dim(\text{null space}) \le n - 0 = n$$

Since $n - \min(m, n) \neq 0$ if m < n, the statement is false.

- (i) For all positive integers m and n, the nullity of an $m \times n$ matrix might be any number from 0 to m.
 - False. As we argued in Part (h),

$$n - \min(m, n) \le \dim(\text{null space}) \le n$$

Since, $n - \min(m, n) \neq 0$ if m < n, the statement is false (the upper bound is also wrong).

(j) For all positive integers m and n, with $m \ge n$, the nullity of an $m \times n$ matrix might be any number from 0 to n.

• True. In Part (h) we found

 $n - \min(m, n) \le \dim(\text{null space}) \le n - 0 = n$

But if $m \ge n$, then $n - \min(m, n) = 0$, and so we have

 $0 \leq \dim$ (null space) $\leq n$

10. (Problems 2.3.1, 2.3.2, 2.3.3, and 2.3.4 in text). Determine which of the following mappings are linear transformations.

(a) $T : \mathbb{R}^3 \to \mathbb{R}^2 : T([x_1, x_2, x_3]) = [x_1 + x_2, x_1 - 3x_2]$

• This mapping is linear since if $\mathbf{v} = [x_1, x_2, x_3]$

$$T (\lambda \mathbf{v}) = T (\lambda [x_1, x_2, x_3])$$

= $T ([\lambda x_1, \lambda x_2, \lambda x_3])$
= $[\lambda x_1 + \lambda x_2, \lambda x_1 - 3\lambda x_2]$
= $\lambda [x_1 + x_2, x_1 - 3x_2]$
= $\lambda T ([x_1, x_2, x_3])$
= $\lambda T (\mathbf{v})$ (*T* preserves scalar multiplication)

and if $\mathbf{v} = [x_1, x_2, x_3]$ and $\mathbf{v}' = [x'_1, x'_2, x'_3]$

$$T (\mathbf{v} + \mathbf{v}') = T ([x_1 + x_1', x_2 + x_2', x_3 + x_3'])$$

= $[x_1 + x_1' + x_2 + x_2', x_1 + x_1' - 3(x_2 - x_2')]$
= $[x_1 + x_2, x_1 - 3x_2] + [x_1' + x_2', x_1' - 3x_2']$
= $T (\mathbf{v}) + T (\mathbf{v}')$ (*T* preserves vector addition)

(b) $T : \mathbb{R}^3 \to \mathbb{R}^4 : T([x_1, x_2, x_3]) = [0, 0, 0, 0]$

and

• This mapping is linear since if $\mathbf{v} = [x_1, x_2, x_3]$

$$T (\lambda \mathbf{v}) = T ([\lambda x_1, \lambda x_2, \lambda x_3])$$

= [0,0,0,0]
= λ [0,0,0,0]
= $\lambda T ([x_1, x_2, x_3])$
= $\lambda T ([x_1, x_2, x_3])$
= $\lambda T (\mathbf{v})$ (*T* preserves scalar multiplication)
if $\mathbf{v} = [x_1, x_2, x_3]$ and $\mathbf{v}' = [x'_1, x'_2, x'_3]$
 $T (\mathbf{v} + \mathbf{v}') = T ([x_1 + x'_1, x_2 + x'_2, x_3 + x'_3])$
= [0,0,0,0]
= [0,0,0,0] + [0,0,0,0]

 $= T(\mathbf{v}) + T(\mathbf{v}') \quad (T \text{ preserves vector addition})$

- (c) $T : \mathbb{R}^3 \to \mathbb{R}^4 : T([x_1, x_2, x_3]) = [1, 1, 1, 1]$
 - This mapping is not linear since if $\mathbf{v} = [x_1, x_2, x_3]$

$$T(\mathbf{v}) = [1, 1, 1, 1]$$

$$T(2\mathbf{v}) = [1, 1, 1, 1] \neq 2 [1, 1, 1, 1] = 2T(\mathbf{v})$$

So the mapping does not preserve scalar multiplication.

- (d) $T : \mathbb{R}^2 \to \mathbb{R}^3 : T([x_1, x_2]) = [x_1 x_2, x_2 + 1, 3x_1 2x_2]$
 - This mapping is not linear since, e.g., if $\mathbf{v} = [1, 1, 1]$

$$T (\mathbf{v}) = [0, 2, 1]$$

$$T (2\mathbf{v}) = T ([2, 2, 2]) = [0, 3, 2] \neq [0, 4, 2] = 2T (\mathbf{v})$$

So the mapping does not preserve scalar multiplication.

11. (Problems 2.3.5 and 2.3.7 in text). For each of the following, assume T is a linear transformation, from the data given, compute the specified value.

(a) Given T([1,0]) = [3,-1], and T([0,1]) = [-2,5], find T([4,-6]).

• Because linear transformations preserve scalar multiplication and vector addition, they also preserve linear combinations:

$$T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2)$$

Now take $\mathbf{e}_1 = [1, 0]$ and $\mathbf{e}_2 = [0, 1]$. Then $T([4, -6]) = T(4\mathbf{e}_1 - 6\mathbf{e}_2)$

$$T([4, -6]) = T(4e_1 - 6e_2)$$

= $4T(e_1) - 6T(e_2)$
= $4[3, -1] - 6[-2, 5]$
= $[12 + 12, -4 - 30]$
= $[24, -34]$

(b) Given T([1,0,0]) = [3,1,2], T([0,1,0]) = [2,-1,4], and T([0,0,1]) = [6,0,1], find T([2,-5,1]).

• As in Part (a), we set $\mathbf{e}_1 = [1, 0, 0]$, $\mathbf{e}_2 = [0, 1, 0]$, and $\mathbf{e}_3 = [0, 0, 1]$ and then compute

$$T([2,-5,1]) = T(2\mathbf{e}_1 - 5\mathbf{e}_2 + \mathbf{e}_3)$$

= 2T(\mathbf{e}_1) - 5T(\mathbf{e}_2) + T(\mathbf{e}_3)
= 2[3,1,2] - 5[2,-1,4] + [6,0,1]
= [6 - 10 + 6,2 + 5 + 0,4 - 20 + 1]
= [2,7,-15]

12. (Problems 2.3.13 and 2.3.15 in text). Find the standard matrix representations of the following linear transformations.

- (a) $T([x_1, x_2]) = [x_1 + x_2, x_1 3x_2]$
 - The standard matrix representations are computed by computing the action of the linear transformation T on the standard basis vectors, and then using results as the columns of the corresponding matrix. For the case at hand we have

$$\mathbf{e}_1 = [1,0] \Rightarrow T(\mathbf{e}_1) = [1+0,1-3(0)] = [1,1]
 \mathbf{e}_2 = [0,1] \Rightarrow T(\mathbf{e}_2) = [0+1,0-3(1)] = [1,-3]$$

So the matrix corresponding to T is

$$\left[\begin{array}{rrr}1 & 1\\ 1 & -3\end{array}\right]$$

(b) $T([x_1, x_2, x_3]) = [x_1 + x_2 + x_3, x_1 + x_2, x_1]$

• We proceed as in Part (a).

$$\mathbf{e}_1 = [1,0,0] \Rightarrow T(\mathbf{e}_1) = [1+0+0,1+0,1] = [1,1,1] \\ \mathbf{e}_2 = [0,1,0] \Rightarrow T(\mathbf{e}_2) = [0+1+0,0+1,0] = [1,1,0] \\ \mathbf{e}_3 = [0,0,1] \Rightarrow T(\mathbf{e}_3) = [0+0+1,0+0,0] = [1,0,0]$$

So the matrix corresponding to T is

13. (Problem 2.3.19 in text). If $T : \mathbb{R}^2 \to \mathbb{R}^3$ is defined by $T([x_1, x_2]) = [2x_1 + x_2, x_1, x_1 - x_2]$ and $T' : \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $T'([x_1, x_2, x_3]) = [x_1 - x_2 + x_3, x_1 + x_2]$, find the standard matrix representation for the linear transformation $T' \circ T$ that carries \mathbb{R}^2 into \mathbb{R}^2 . Find a formula for $(T' \circ T)([x_1, x_2])$.

• The matrix representations corresponding to T and T' are

-

$$\mathbf{M}_{T} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 1 & -1 \end{bmatrix} \quad , \quad \mathbf{M}_{T'} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

The matrix representation corresponding to $T' \circ T$ will be given by the product of the corresponding matrices

$$\mathbf{M}_{T' \circ T} = \mathbf{M}_{T'} \mathbf{M}_{T} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix}$$

Hence

$$(T' \circ T) (x_1, x_2) = [2x_1, 3x_1 + x_2]$$

14. (Problem 2.3.29 in text). Determine whether the following statements are true or false.

(a) Every linear transformation is a function.

(b) Every function mapping \mathbb{R}^n to \mathbb{R}^m is a linear transformation.

• False. In order to be a linear transformation a function $f: \mathbb{R}^n \to \mathbb{R}^m$ must preserve scalar multipli-cation and vector additon.

(c) Composition of linear transformations corresponds to multiplication of their standard matrix representations.

(d) Function composition is associative.

(e) An invertible linear transformation mapping \mathbb{R}^n to itself has a unique inverse.

- True. (This follows from the corresponding theorem about invertible matrices.)
- (f) The same matrix may be the standard matrix representation for several different linear transformations.
 - False. (Unless one allows more general vector spaces but idea won't be broached until Chapter 3.)

(g) A linear transformation having an $m \times n$ matrix as its standard matrix representation maps \mathbb{R}^n into \mathbb{R}^m .

• True.

(h) If T and T' are different linear transformations mapping \mathbb{R}^n into \mathbb{R}^m , then we may have $T(\mathbf{e}_i) = T'(\mathbf{e}_i)$ for all standard basis vectors \mathbf{e}_i of \mathbb{R}^n .

• False. Linear transformations are determined uniquely by their standard matrix representations. \Box

(i) If T and T' are different linear transformations mapping \mathbb{R}^n into \mathbb{R}^m , then we may have $T(\mathbf{e}_i) = T'(\mathbf{e}_i)$ for some standard basis vectors \mathbf{e}_i of \mathbb{R}^n .

• True. (So long as they are not all the same.)

(j) If $B = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ is a basis for \mathbb{R}^n and T and T' are linear transformations from \mathbb{R}^n into \mathbb{R}^m , then $T(\mathbf{x}) = T'(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$ if and only if $T(\mathbf{b}_i) = T'(\mathbf{b}_i)$ for $i = 1, 2, \dots, n$.

• True.