LECTURE 13

Determinants

1. Calculating the Area of a Parallelogram

Definition 13.1. Let A be a 2×2 matrix.

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

The determinant of \mathbf{A} is the number

$$\det\left(\mathbf{A}\right) = ad - bc$$

Now consider the parallelogram formed from two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$.

The area of this parallelogram is evidently the sum of the areas the two isometric triangles obtained by bisecting the parallelogram along the line from the tip of **u** to the tip of **v**. Now the height of a triangle formed from **u** and **v** will be given by $||\mathbf{u}|| \sin(\theta)$.

The area of this triangle is given by a formula from high school geometry:

area of a triangle =
$$\frac{1}{2}$$
 (length of base) × (height of triangle)
= $\frac{1}{2} \|\mathbf{v}\| \|\mathbf{u}\| \sin(\theta)$

Hence, the area for the parallelogram will be

area of parallelogram = 2 times area of
$$\Delta_{\mathbf{uv}}$$

= $2 \cdot \frac{1}{2} \|\mathbf{v}\| \|\mathbf{u}\| \sin(\theta)$

$$= \|\mathbf{v}\| \|\mathbf{u}\| \sin (\theta)$$
$$= \|\mathbf{v}\| \|\mathbf{u}\| \sqrt{1 - \cos^2(\theta)}$$

If we square both sides we have

$$area^{2} = \|\mathbf{v}\|^{2} \|\mathbf{u}\|^{2} \left(1 - \cos^{2}(\theta)\right)$$

$$= \|\mathbf{v}\|^{2} \|\mathbf{u}\|^{2} \left(1 - \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\| \|\mathbf{u}\|}\right)^{2}\right)$$

$$= \|\mathbf{v}\|^{2} \|\mathbf{u}\|^{2} - (\mathbf{u} \cdot \mathbf{v})^{2}$$

$$= (\mathbf{v} \cdot \mathbf{v}) (\mathbf{u} \cdot \mathbf{u}) - (\mathbf{u} \cdot \mathbf{v})^{2}$$

$$= (v_{1}^{2} + v_{2}^{2}) (u_{1}^{2} + u_{2}^{2}) - (u_{1}v_{1} + u_{2}v_{2})^{2}$$

$$= v_{1}^{2}u_{1}^{2} + v_{1}^{2}u_{2}^{2} + v_{2}^{2}u_{1}^{2} + v_{2}^{2}u_{2}^{2} - v_{1}^{2}u_{1}^{2} - 2u_{1}v_{1}u_{2}v_{2} - v_{2}^{2}u_{2}^{2}$$

$$= v_{1}^{2}u_{2}^{2} + v_{2}^{2}u_{1}^{2} - 2u_{1}v_{1}u_{2}v_{2}$$

$$= (u_{1}v_{2} - u_{2}v_{1})^{2}$$

 \mathbf{So}

$$area = |u_1v_2 - u_2v_1|$$

Now let **A** be the 2 × 2 matrix formed by interpreting $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$ as its columns:

$$\mathbf{A} = \left[\begin{array}{cc} u_1 & v_1 \\ u_2 & v_2 \end{array} \right]$$

Evidently,

 $|\det (\mathbf{A})| = |u_1 v_2 - u_2 v_1|$ = area of parallelogram formed from **u** and **v**

2. Calculating the Volume of a Parallelopiped

Definition 13.2. Let A be a 3×3 matrix.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

-

The determinant of \mathbf{A} is the number

$$\det (\mathbf{A}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} -a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

A **parallelopiped** is the 3-dimensional analog a 2-dimensional parallelogram; these are constructed by regarding three 3-dimensional vectors and their translates as the edges of a solid body, and the parallelograms formed from pairs of these vectors as the sides. We shall not work out the geometry of this example but simply state the following fact:

FACT 13.3. Let $P_{\mathbf{a},\mathbf{b},\mathbf{c}}$ be the parallelopiped associated with three vectors $\mathbf{a},\mathbf{b},\mathbf{c} \in \mathbb{R}^3$, and let \mathbf{A} be the 3×3 matrix formed by regarding the vectors \mathbf{a},\mathbf{b} , and \mathbf{c} as its column vectors. Then

volume of $P_{\mathbf{a},\mathbf{b},\mathbf{c}} = |\det(\mathbf{A})|$

3. More General Determinants

The formula for the determinant of a general $n \times n$ will in general involve n! separate terms; thus, the determinant for a 4×4 matrix will involve 4! = 24 terms, and the determinant for a 5×5 matrix will involve 5! = 60 terms! Rather than giving an explicit formula for the higher order determinants, we'll present an algorithmic construction.

DEFINITION 13.4. Let $\mathbf{A} = [a_{ij}]$ be an $n \times n$ matrix. The **minor matrix** corresponding to the entry a_{ij} is the $(n-1) \times (n-1)$ matrix formed from \mathbf{A} by deleting the *i*th row and *j*th column of \mathbf{A} .

DEFINITION 13.5. The determinant of a 1×1 matrix is its sole entry. Let $\mathbf{A} = [a_{ij}]$ be an $n \times n$ matrix. The cofactor C_{ij} of a_{ij} is $(-1)^{i+j}$ times the determinant of the minor matrix M_{ij} corresponding to a_{ij} .

$$C_{ij} = (-1)^{i+j} \det (A_{ij})$$

The determinant of \mathbf{A} is

$$\det \left(\mathbf{A}\right) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + \cdots + a_{1n}C_{1n}$$

EXAMPLE 13.6. Calculate the determinant of the following matrix.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ -1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 2 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

• We have

$$\begin{vmatrix} 1 & 2 & 0 & 1 \\ -1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 2 \\ 1 & 1 & 1 & 0 \end{vmatrix} = (1) \begin{vmatrix} 0 & 1 & 2 \\ 1 & -1 & 2 \\ 1 & 1 & 0 \end{vmatrix} - (2) \begin{vmatrix} -1 & 1 & 2 \\ 0 & -1 & 2 \\ 1 & 1 & 0 \end{vmatrix} + (0) \begin{vmatrix} -1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 1 & 0 \end{vmatrix} - (1) \begin{vmatrix} -1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{vmatrix}$$

Now

$$\begin{vmatrix} 0 & 1 & 2 \\ 1 & -1 & 2 \\ 1 & 1 & 0 \end{vmatrix} = (0) \begin{vmatrix} -1 & 2 \\ 1 & 0 \end{vmatrix} - (1) \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} + (2) \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 0 - (0 - 2) + 2(1 + 1) = 6$$

$$\begin{vmatrix} -1 & 1 & 2 \\ 0 & -1 & 2 \\ 1 & 1 & 0 \end{vmatrix} = (-1) \begin{vmatrix} -1 & 2 \\ 1 & 0 \end{vmatrix} - (1) \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} + (2) \begin{vmatrix} 0 & -1 \\ 1 & 1 \end{vmatrix} = -(-2) - (-2) + 2(1) = 6$$

$$\begin{vmatrix} -1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{vmatrix} = (-1) \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} - (0) \begin{vmatrix} 0 & -1 \\ 1 & 1 \end{vmatrix} + (1) \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} = -(1 + 1) + 0 + (-1) = -3$$

 \mathbf{So}

$$\begin{vmatrix} 1 & 2 & 0 & 1 \\ -1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 2 \\ 1 & 1 & 1 & 0 \end{vmatrix} = (1)(6) - (2)(6) + 0 - (-3) = -3$$

4. Properties of Determinants

THEOREM 13.7. 1. For any square matrix \mathbf{A} , we have det $(\mathbf{A}^T) = \det(\mathbf{A})$.

- 2. If A is a square matrix and \mathbf{A}' is a matrix obtained from \mathbf{A} by interchanging two of its rows then $\det(\mathbf{A}') = -\det(\mathbf{A})$.
- 3. If two rows of a square matrix \mathbf{A} are identical then det $(\mathbf{A}) = 0$.
- 4. If **A** is a square matrix and **A**' is a matrix obtained from **A** by multiplying one of its rows by a scalar r then det (**A**') = r det (**A**)
- 5. If **A** is a square matrix and **A**' is a matrix obtained from **A** by adding a scalar multiple of one row to another, then det $(\mathbf{A}') = \det(\mathbf{A})$.

The above theorem tells us what effect each of the elementary row operations has on the determinant of a matrix. We also have

LEMMA 13.8. If \mathbf{A} is an upper triangular matrix then det (\mathbf{A}) is equal to the products of the entries along the diagonal.

We won't prove this theorem in general. However, the basic idea underlying this theorem is easily demonstrated by a simple example.

EXAMPLE 13.9. Compute the determinant of

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{bmatrix}$$

We have

Combining the theorem and lemma above we can now conclude

COROLLARY 13.10. If A is an $n \times n$ matrix and A' is a row-echelon form of A obtained without row rescalings, then

$$\det \left(\mathbf{A} \right) = (-1)^j \prod_{i=1}^n a'_{ii}$$

where j is the total number of row-interchanges that occured in row-reducing A to A'. Here $\prod_{i=1}^{n} a'_{ii}$ is the total product of the diagonal entries of A'.

COROLLARY 13.11. A square matrix **A** is invertible if and only if det $(\mathbf{A}) \neq 0$.

THEOREM 13.12. The determinant of a product of two square matrices is equal to the product of their determinants:

$$\det (\mathbf{AB}) = \det (\mathbf{A}) \det (\mathbf{B}) .$$