LECTURE 11

Matrices and Linear Transformations

1. Mappings between Sets

Let A be an m xn matrix. The goal of this lecture is to develop a geometric interpretation for homogeneous
linear systems of the form Ax = b.

First let me recall some basic notions about maps between two sets. Let X and Y be sets. A function
f: X — Y is arule that associates with each element x € X an element f(y) € Y. The set X is called the
domain of the function f and the set Y is called the codomain of f. The set

{lyeY |y = f(z) for some z € X}
is called the image of the function f, and if W is a subset of Y, then the set
W) ={ze X | flx) e W}

is called the inverse image of W under f.

X

2. Linear Transformations

We shall now restrict our attention to the following kinds of maps.
DEFINITION 11.1. A function T : R™ — R™ is called a linear transformation if it satisfies

1. T(u+v)=T(u)+T(v) (i.e the function T preserves vecltor addition)
2. T(rv)=7rT(v) (i.e., the funcltion T preserves scalar mulliplicalion)

for all vectors u,v € R™ and all scalars r € R.

It is easy to see that if a mapping preserves both vector addition and scalar addition, then it will also
preserve a combination of such operations; that is to say, it will preserve genearl linear combinations

T (rivi+reva+---+reve) =T (vi) + 2T (va) +--- + 7T (vz)

EXAMPLE 11.2. Show that the transformation T : R? — R3 : (s,{) — (¢,8,1+t+s) is not a linear
transformation.
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o Let v = (s,1) Then
T(v) = T(s,t)=(,s,1+t+9)
T(rv) = T(rs,rt)=(rt,rs,1 +rs—+ri)
# r(t,s,1+1t+s)=rT(v)

and so T does not preserve scalar multiplication: hence it is not a linear transformation.

3. Linear Transformations and Matrices

Note that in the preceding example, despite the fact that the coordinates of the image points are linear
functions in the s and ¢, the mapping T is not a linear transformation. What then constitutes a linear
mapping?

LEMMA 11.3. Let T : R™ — R™ be a linear mapping and let B = {by,ba,... ,b,} be a basis for R™. Then
every vector in the image of T can be writlen as a linear combination of the vectors T (by), T (bg),... , T (b,).

Proof. Since B is a basis for R", any vector v € R™ can be expressed as
v =r1by +1roba+--- +ryb,
And so the image of a vector v by T will be expressible as
T(v) = T(riby+mrba+---+1r,by)
= rT(by)+73T(b2)+---+7zT(by) (since T is a linear transformation)

THEOREM 11.4. Let T : R™ — R™ be a linear transformation, let {e; | i =1,... ,n} be the standard basis

for R™:
1, g=u
(el)j_{ 0, j#i
and let A be the m x n matriz whose i'" column coincides with T (e;) € R™. Then
T (x) = Ax

In other words, every linear transformation T : R™ — R™ is equivalent to the matrix mulitiplication of the
vectors x € R™ by an m x n matrix A. The converse of this fact is also true, if A is an m x n matrix and
T : R™ — R™ is the mapping defined by

x€eR" —- Ax ¢ R™
then T is a linear transformation.

ExaMPLE 11.5. Find the matrix corresponding to the linear transformation T : R? — R? given by
T (x1,22) = (21 — 22, 21 + 22, 21).

e We have
T(e;) = T(1,00=(1-0,140,1)=(1,1,1)
T(e2) = T(0,1)=(0-1,04+1,0)=(-1,1,0)
Hence
1 -1
A=[T(e1),T(eg)]=| 1 1
1 0

We confirm
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DEFINITION 11.6. The kernel of a linear mapping T : R™ — R™ is the set of all x € R™ such that
Tx =0¢€ R™. The range of T is the sel of all y € R™ such that y = T (x) for some x € R™.

Now let A be the m x n matrix corresponding to a linear transformation T : R® — R™. Then
ker (T) = {xeR"|T(x)=0}
= {x€R"| Ax =0} = Null space of A

range (T) = {yeR™|y=T(x) , forsomexcR"}
= {yeR"|y=Ax , forsomex €R"} = column space of A

Note also that the dimension n of the domain R™ of T is same as the number of column in the corresponding
matrix A. Now from Theorem 10.6 of Lecture 10 we know

(number of columns of A) = (dimension of null space of A) + (dimension of column space of A)
In terms of notions of linear transformations this translates to

(dimension of domain of T) = (dimension of kernel of T') + (dimension of range of T)

ExamPLE 11.7. Consider the linear transformation T : R — R? given by T (21,72, 23) = (z1 + 23,21 + T2 + 223, —71 +
Find a basis for the kernel of T and a basis for the range of T.

e Let’s first find the matrix representation of T. We have

T(e;) = T(1,0,0)=(14+0,0+0+2(0),—1+1,2(0) +2(0)) =(1,1,-1,0)
T(ez) = T(0,1,0)=(0+0,0+1+2(0),—0+1,2(1) +2(0)) =(0,1,1,2)
T(es) = T(0,0,1)=(0+1,0+0+2(1),—-0+0,2(0) +2(1)) = (1,2,0,2)
and so the linear transformation T corresponds to the 4 x 3 matrix
1 0 1
A=l 1
0 2 2

As we pointed out above the kenel of T is the same as the null space of A and the range of T is the
same thing as the column space of A. To find the null space and column space of a matrix we first
row reduce A to reduced row-echelon form

1 01 101 101

112 01 1 o1 1]

A=l 43 107 lo1 1] ]ooo]|=A
0 2 2 01 1 000

From Lecture 10 (Lemma 10.3) we know that the column space of the matrix A is spanned by the
columns in A to which correspond columns in the row-echelon form A’ that contain pivots. Thus,

1

range of T = column space of A = span

— = O

—1 |
0 2

The kernel of T can be identified with the null space of A, which is equal to the null space of
A': i.e, the solution set

Ty +x3=0
To+ 23 =0 Ty = —I3
0=0 = {962:—333

0=0
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SO
—X3 -1 i
X=| —x3 | =23 | —1
I3 1 ]
So
-1
ker (T) = span -1
1

4, Composition of Linear Transformations

Suppose we have two linear transformations

T, : R"—=R™

Ty, : R™ —RP
Because every element in the range of T can be regarded as an element in the domain of T2 the composed
mapping

TioTe:R" =R ; xeR" — To(T;(x))€RF

is well defined, and, in fact, is another linear transformation. Indeed, if we switch back to our matrix
language, where the transformations T; : R® — R™ and T : R™ — RP are implemented by, respectively,

an m X n matrix A; and an p X m matrix As, then to the composed transformation T 0Ty : R — RP we
have the following matrix:

App=A)A

Note that this matrix multiplication is also well-defined since the number m of columns of Ay is the same
as the number m of rows of A;.

ExaMPLE 11.8. Consider the linear transformation corresponding to a rotation in the zy plane by an angle

0
x — ' =xcos(f)+ysin(f)
y — y' =—wxsin(f) +ycos(h)
To this linear transformation corresponds the following 2 X 2 matrix:

e e

If we apply this transformation twice, the effect should be that of a two rotations by the angle 8. We thus
should have

(11.1) AA:[ cos(20)  sin(26) }

—sin (260) cos(20)

Calculating the matrix multiplication on the left hand side:

| cos(8) sin(9) cos(f) sin(6) | cos? (0) — sin® (0) 2cos(0)sin(0))
(11.2)  AA=) sin (8) cos(8) } [ —sin (0) cos() } o [ —2cos (8)sin (0)  cos? (0) — sin? (9)
Comparing (11.1) with (11.2) we see we must have
cos (20) = cos? (0) — sin® (9)
sin (20) = cos(0)sin (0)

We have thus, by a simple matrix calculation, rederived the double angle trig identities one learns in high
school.



