
LECTURE 11

Matrices and Linear Transformations

1. Mappings between Sets

Let A be an m×n matrix. The goal of this lecture is to develop a geometric interpretation for homogeneous
linear systems of the form Ax = b.

First let me recall some basic notions about maps between two sets. Let X and Y be sets. A function

f : X → Y is a rule that associates with each element x ∈ X an element f(y) ∈ Y . The set X is called the
domain of the function f and the set Y is called the codomain of f. The set

{y ∈ Y | y = f(x) for some x ∈ X}

is called the image of the function f , and if W is a subset of Y , then the set

f−1 (W ) = {x ∈ X | f(x) ∈W}

is called the inverse image of W under f.

2. Linear Transformations

We shall now restrict our attention to the following kinds of maps.

Definition 11.1. A function T : Rn → R
m is called a linear transformation if it satisfies

1. T (u+ v) = T (u) +T (v) (i.e. the function T preserves vector addition)
2. T (rv) = rT (v) (i.e., the function T preserves scalar multiplication)

for all vectors u,v ∈ R
n and all scalars r ∈ R.

It is easy to see that if a mapping preserves both vector addition and scalar addition, then it will also
preserve a combination of such operations; that is to say, it will preserve genearl linear combinations

T (r1v1 + r2v2 + · · ·+ rkvk) = r1T (v1) + r2T (v2) + · · ·+ rkT (vk)

Example 11.2. Show that the transformation T : R2 → R
3 : (s, t) → (t, s, 1 + t + s) is not a linear

transformation.
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• Let v = (s, t) Then

T (v) = T (s, t) = (t, s, 1 + t+ s)

T (rv) = T (rs, rt) = (rt, rs,1 + rs+ rt)

	= r (t, s, 1 + t + s) = rT (v)

and so T does not preserve scalar multiplication: hence it is not a linear transformation.

3. Linear Transformations and Matrices

Note that in the preceding example, despite the fact that the coordinates of the image points are linear
functions in the s and t, the mapping T is not a linear transformation. What then constitutes a linear
mapping?

Lemma 11.3. Let T : R
n → R

m be a linear mapping and let B = {b1,b2, . . . ,bn} be a basis for Rn. Then

every vector in the image ofT can be written as a linear combination of the vectors T (b1) ,T (b2) , . . . ,T (bn).

Proof. Since B is a basis for Rn, any vector v ∈ Rn can be expressed as

v = r1b1 + r2b2 + · · ·+ rnbn

And so the image of a vector v by T will be expressible as

T (v) = T (r1b1 + r2b2 + · · ·+ rnbn)

= r1T (b1) + r2T (b2) + · · ·+ rkT (bk) (since T is a linear transformation)

Theorem 11.4. Let T : R
n → R

m be a linear transformation, let {ei | i = 1, . . . , n} be the standard basis

for Rn :

(ei)j =

{
1 , j = i

0 , j 	= i

and let A be the m× n matrix whose ith column coincides with T (ei) ∈ Rm. Then

T (x) =Ax

In other words, every linear transformation T : Rn → R
m is equivalent to the matrix mulitiplication of the

vectors x ∈ Rn by an m× n matrix A. The converse of this fact is also true, if A is an m× n matrix and
T : Rn → R

m is the mapping defined by

x ∈ Rn →Ax ∈ Rm

then T is a linear transformation.

Example 11.5. Find the matrix corresponding to the linear transformation T : R2
→ R

3 given by
T (x1, x2) = (x1 − x2, x1 + x2, x1).

• We have

T (e1) = T (1,0) = (1− 0, 1 + 0,1) = (1, 1,1)

T (e2) = T (0,1) = (0− 1, 0 + 1,0) = (−1,1,0)

Hence

A = [T (e1) ,T (e2)] =


 1 −1

1 1

1 0




We confirm

Ax =


 1 −1

1 1

1 0


[ x1

x2

]
=


 x1 − x2

x1 + x2

x1


 =Tx
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Definition 11.6. The kernel of a linear mapping T : Rn → R
m is the set of all x ∈ R

n such that

Tx = 0 ∈ Rm. The range of T is the set of all y ∈ Rm such that y = T (x) for some x ∈ Rn.

Now let A be the m× n matrix corresponding to a linear transformation T : Rn → R
m. Then

ker (T) = {x ∈ Rn | T (x) = 0}

= {x ∈ Rn |Ax = 0} = Null space of A

range (T) = {y ∈ Rm | y = T (x) , for some x ∈Rn}

= {y ∈ Rm | y =Ax , for some x ∈Rn} = column space of A

Note also that the dimension n of the domain Rn of T is same as the number of column in the corresponding
matrix A. Now from Theorem 10.6 of Lecture 10 we know

(number of columns of A) = (dimension of null space of A) + (dimension of column space of A)

In terms of notions of linear transformations this translates to

(dimension of domain of T) = (dimension of kernel of T) + (dimension of range of T)

Example 11.7. Consider the linear transformationT : R3
→ R

2 given byT (x1, x2, x3) = (x1 + x3, x1 + x2 +2x3,−x1 +
Find a basis for the kernel of T and a basis for the range of T.

• Let’s first find the matrix representation of T. We have

T (e1) = T (1,0,0) = (1 + 0, 0 + 0 + 2(0),−1 + 1, 2(0) + 2(0)) = (1, 1,−1, 0)

T (e2) = T (0,1,0) = (0 + 0, 0 + 1 + 2(0),−0 + 1, 2(1) + 2(0)) = (0, 1,1,2)

T (e3) = T (0,0,1) = (0 + 1, 0 + 0 + 2(1),−0 + 0, 2(0) + 2(1)) = (1, 2,0,2)

and so the linear transformation T corresponds to the 4× 3 matrix

A =




1 0 1
1 1 2
−1 1 0
0 2 2




As we pointed out above the kenel of T is the same as the null space of A and the range of T is the
same thing as the column space of A. To find the null space and column space of a matrix we first
row reduce A to reduced row-echelon form

A =




1 0 1
1 1 2
−1 1 0
0 2 2


→



1 0 1
0 1 1
0 1 1
0 1 1


→



1 0 1
0 1 1
0 0 0
0 0 0


 =A′

From Lecture 10 (Lemma 10.3) we know that the column space of the matrix A is spanned by the
columns in A to which correspond columns in the row-echelon form A′ that contain pivots. Thus,

range of T = column space of A = span







1
1
−1
0


 ,



0
1
1
2







The kernel of T can be identified with the null space of A, which is equal to the null space of
A

′: i.e, the solution set

x1 + x3 = 0
x2 + x3 = 0
0 = 0
0 = 0




⇒

{
x1 = −x3
x2 = −x3
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so

x =


 −x3−x3

x3


 = x3


 −1−1

1




So

ker (T) = span




 −1−1

1






4. Composition of Linear Transformations

Suppose we have two linear transformations

T1 : R
n
→ R

m

T2 : R
m
→ R

p

Because every element in the range of T1 can be regarded as an element in the domain of T2 the composed
mapping

T1 ◦T2 : R
n
→ R

p ; x ∈ R
n

→ T2 (T1 (x)) ∈ R
p

is well defined, and, in fact, is another linear transformation. Indeed, if we switch back to our matrix
language, where the transformations T1 : R

n
→ R

m and T2 : R
m
→ R

p are implemented by, respectively,
an m×n matrix A1 and an p×m matrix A2, then to the composed transformation T1 ◦T2 : R

n
→ R

p we
have the following matrix:

A12 =A2A1

Note that this matrix multiplication is also well-defined since the number m of columns of A2 is the same
as the number m of rows of A1.

Example 11.8. Consider the linear transformation corresponding to a rotation in the xy plane by an angle
θ

x → x′ = x cos(θ) + y sin(θ)

y → y′ = −x sin(θ) + y cos(θ)

To this linear transformation corresponds the following 2× 2 matrix:

A =

[
cos(θ) sin(θ)
− sin (θ) cos(θ)

]

If we apply this transformation twice, the effect should be that of a two rotations by the angle θ. We thus
should have

AA =

[
cos(2θ) sin(2θ)
− sin (2θ) cos(2θ)

]
(11.1)

Calculating the matrix multiplication on the left hand side:

AA =

[
cos(θ) sin(θ)
− sin (θ) cos(θ)

] [
cos(θ) sin(θ)
− sin (θ) cos(θ)

]
=

[
cos2 (θ)− sin2 (θ) 2 cos (θ) sin (θ))
−2 cos (θ) sin (θ) cos2 (θ)− sin2 (θ)

]
(11.2)

Comparing (11.1) with (11.2) we see we must have

cos (2θ) = cos2 (θ)− sin2 (θ)

sin (2θ) = cos (θ) sin (θ)

We have thus, by a simple matrix calculation, rederived the double angle trig identities one learns in high
school.


