
LECTURE 9

Linear Independence and Dimension

A subspace W (for example, the solution set of a set of homogeneous linear equations) can be generated
by taking linear combinations of a set of vectors {w1, . . . ,wk}. The purpose of this lecture is address the

question: given a fixed subspace W , how do we know when we’ve picked enough vectors w1, . . . ,wk ∈ W

so that we can represent every other vector in W uniquely in terms of a particular linear combination of

the wi? In the language of Lecture 7, how do we know we have a basis for W?

1. Constructing a Basis for a Span of Vectors

Let w1, . . . ,wk be vectors in Rn, and let

W ≡ span (w1, . . . ,wk) ≡ {w ∈ Rn | w = c1w1 + c2w2 + · · ·+ ckwk ; c1, . . . , ck ∈ R}(9.1)

Suppose {w1, . . . ,wk} is not a basis for W , then by Theorem 7.14 (Lecture 7), we know that we must have
a non-trivial solution of

0 = r1w1 + r2w2 + · · ·+ rkwk(9.2)

that is, a solution for which at least one of the ri does not equal zero. Without loss of generality (e.g. by
reordering the vectors wi) we can assume it is the last coefficient rk that does not vanish. Then we can use
(9.2) to express wk in terms of the vectors w1, . . . ,wk−1

wk = −
1

rk
(r1w1 + r2w2 + · · ·+ rk−1wk−1)

It is then easy to see that the smaller set of vectors {w1, . . . ,wk−1} also generate W : for w ∈ W implies

w = c1w1 + · · ·+ ck−1wk−1 + ckwk

= c1w1 + · · ·+ ck−1wk−1 −
ck

rk
(r1w1 + r2w2 + · · ·+ rk−1wk−1)

=

(
c1 −

ckr1

rk

)
w1 +

(
c2 −

ckr2

rk

)
w2 + · · ·+

(
ck−1 −

ckrk−1

rk

)
wk−1

∈ span (w1,w2, . . . ,wk−1)

In other words, if {w1, . . . ,wk} is not a basis, we can always find a smaller subset of vectors that generate
same subspace. The converse to this statement is also true: if we can not find a smaller (i.e., proper) subset
of vectors that generate the subspace W = span (w1, . . . ,wk), then the vectors w1, . . . ,wk form a basis
for W .

Example 9.1. Find a basis for W = span (w1,w2,w3) ⊂ R
2 where

w1 =

[
1
2

]
, w2 =

[
1
1

]
, w3 =

[
−2
−1

]

• First we look for nontrivial solutions of

r1w1 + r2w2 + r3w3 = r1

[
1
2

]
+ r2

[
1
1

]
+ r3

[
−2
−1

]
=

[
0
0

]
= 0(9.3)
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This vector equation is equivalent to the following linear system

r1 + r2 − 2r3 = 0

2r1 + r2 − r3 = 0

or the following augmented matrices

[
1 1 −2
2 1 −1

∣∣∣∣ 0
0

]
R2 → R2 − 2R1
−−−−−−−−−−−→

[
1 1 −2
0 −1 3

∣∣∣∣ 0
0

]
R1 → R1 +R2

R2 →−R2
−−−−−−−−−−−−→

[
1 0 1
0 1 −3

∣∣∣∣ 0
0

]

or

r1 + r3 = 0
r2 − 3r3 = 0

}
⇒

{
r1 = −r3
r2 = 3r3

for some r3 ∈ R

Taking r3 = 1 we thus have a solution with r1 = −1 and r2 = 3. Indeed,

(−1)

[
1
2

]
+ 3

[
1
1

]
+

[
−2
−1

]
=

[
−1 + 3 = 2
−2 + 3− 1

]
=

[
0
0

]

So

−w1 +3w2 +w3 = 0 ⇒ w3 = w1 − 3w2

Because we can express w3 as a linear combination of w1 and w2

W ≡ span (w1,w2,w3) = span (w1,w2)

and perhaps {w1,w2} is a basis for W .
To see if {w1,w2} is indeed a basis, we repeat the calculation above. We first look for non-trivial

solutions of

r1w1 + r2w2 = 0(9.4)

or

r1 + r2 = 0

2r1 + r2 = 0

The corresponding augmented matrix is[
1 1
2 1

∣∣∣∣ 0
0

]
R2 → R2 − 2R1−−−−−−−−−−−→

[
1 1
0 −1

∣∣∣∣ 0
0

]
R1 → R1 +R2

R2 →−R2
−−−−−−−−−−−−→

[
1 0
0 1

∣∣∣∣ 0
0

]

which corresponds to a linear system with only one solution

r1 = 0

r2 = 0

Since we can’t find non-trivial solutions of (9.4), we conclude that {w1,w2} is a basis for span (w1,w2) =
span (w1,w2,w3) ≡W .

The following definition formalizes the ideas behind this construction of bases.

Definition 9.2. Let {w1, . . . ,wk} be a set of vectors in Rn. A dependence relation among the wi is an

equation of the form

r1w1 + r2w2 + · · ·+ rkwk = 0 , with at least one ri �= 0.

If such a dependence relation exists, the set {w1, . . . ,wk} is a linearly dependent set of vectors. If such

a dependence relation does not exist,then the vectors w1, . . . ,wk are said to be linearly independent.
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2. Dimensions of Subspaces

Theorem 9.3. Let W be a subspace spanned by a set of vectors {w1, . . . ,wk} and let {v1, . . . ,vs} be a set

of linear independent vectors in W . Then s ≤ k.

This theorem is kinda tedious to prove; but the basic idea behind the proof is very simple. Since vectors vi
lie in the span of the vectors wj, each of the vectors vi can be written in the form

vi = ci1w1 + ci2w2 + · · ·+ cikwk

The hypothesis that the vi are linearly independent requires that the linear system

0 = r1v1 + · · ·+ rsvs

= r1 (c11w1 + c12w2 + · · ·+ c1kwk) + · · ·+ rs (cs1w1 + cs2w2 + · · ·+ cskwk)

= (r1c11 + · · ·+ rscs1)w1 + · · ·+ (r1c1k + · · ·+ rscsk)wk

Analysis of the latter system shows that it will have fewer equations (at least k) than unknowns rs unless
s ≤ k. Hence, we can only obtain a unique solution when s ≤ k. Hence, the set {v1, . . . ,vs} can be linearly
independent only if s ≤ k.

Corollary 9.4. Any two bases of a subspace W of Rn have the same number of vectors.

Proof. Suppose that a set B with k vectors and a set B′ with k′ vectors were both bases for a subspace

W . Then both B and B′ are linearly independent sets of vectors, and the vectors in either set span W .

Regarding B as a set of vectors spanning W and B′ as a set of linearly independent vectors in W , the

preceding theorem tells us that k′ ≤ k. On the other hand, regarding B′ as a set of vectors spanning

W and B as a set of linearly independent vectors in W , the preceding theorem tells us that k ≤ k′. We

conclude that k = k′.

Definition 9.5. Let W be a subspace of Rn. The number of elements in any basis forW is the dimension

of W .

Theorem 9.6. Existence and Determination of Bases

1. Every subspace of W of Rn has a basis and dim(W ) ≤ n.

2. Every linearly independent set of vectors in Rn can be enlarged, if necessary, to become a basis for

R
n.

3. If W is a subspace of Rn and dim(W) = k, then

(a) every linearly independent set of k vectors in W is a basis for W.

(b) every set of k vectors in W that spans W is a basis for W .


