
LECTURE 7

Subspaces of Rn

1. Subspaces

Definition 7.1. A subset W of Rn is said to be closed under vector addition if for all u,v ∈ W ,

u+ v is also in W . If rv is in W for all vectors v ∈ W and all scalars r ∈ R, then we say that W is

closed under scalar multiplication. A non-empty subset W of Rn that is closed under both vector addition

and scalar multiplication is called a subspace of Rn.

Example 7.2. Let u = (1, 0) and v = (0,2) be vectors in R2. We can construct a subset that closed under
vector addition as follows.

W0 = {w ∈ Rn | w = ju+ kv ; j, k positive integers}

To see that this set is closed under vector addition, let w,w′ ∈ W0. Then

w = ju+ kv

w
′ = j ′

u+ k′
v

for some positive integers j, k, j′, and k′. But then there are positive integers j, k, j′ and k′ such that

w+w′ = (ju+ kv) + (j′
u+ k′

v) = (j + j ′)u+ (k + k′)v ∈W

because both (j + j′) and (k + k′) ar e positive integers if j, k, j′, and k′ are positive integers.

The set W0 is not a subspace, however; because it is not closed under scalar multiplication. To see this,
note that the vector

1

2
u =

(
1

2
,0

)

can not be represented as sum of u and v with positive integer coefficients.

Example 7.3. The preceding example, however, does provide a clue as to one way to constructing a sub-
space. Let u = (1, 0) and v = (0, 2) be vectors in R2. Consider the set

W = {w ∈ Rn | w = ju+ kv ; j, k ∈ R}

This is closed under vector addition because if w,w′ ∈ W , then there are real numbers r, s, r′ and s′ such
that

w = ru+ sv

w
′ = r′

u+ s′
v

But then

w +w
′ = (r + r′)u+ (s + s′)v ∈ W

since (r + r′) ∈ R and (s+ s′) ∈ R. And, for any real number t

tw = (tr)u+ (ts)v ∈ W

since (tr) ∈ R and (ts) ∈ R.

The following theorem generalizes this last example.
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2. SOLUTIONS OF HOMOGENEOUS SYSTEMS 2

Theorem 7.4. Let {v1, . . . ,vk} be a set of vectors in Rn. Then the span of {v1, . . . ,vk} is a subspace of

R
n.

Proof. Recall that the span of a set of vector is the set of all possible linear combinations of those vectors.
Set

W = span (v1, . . . ,vk) ≡ {w ∈ Rn | w = c1v1 + c2v2 + · · ·+ ckvk ; c1, c2, . . . , ck ∈ R}

Then for any vectors w,w′
∈ W we have

w = c1v1 + c2v2 + · · · + ckvk

w
′ = c′

1
v1 + c′

2
v2 + · · · + c′

k
vk

for some choice of real numbers c1, . . . , ck and c′

1
, . . . , c′

k
. But then

w +w
′ = (c1 + c′

1
)v1 + (c2 + c′

2
)v2 + · · · + (ck + c′

k
)vk ∈ W

and if t is any real number

tw = (tc1)v1 + (tc2)v2 + · · · + (tck)vk ∈ W

Remark 7.5. We shall often refer to the span of a set {v1, . . . ,vk} of vectors in R
n as the subspace

generated by {v1, . . . ,vk} .

2. Solutions of Homogeneous Systems

We now come to another fundamental way of realizing a subspace of Rn.

Definition 7.6. A linear system of the form Ax = 0 is called homogeneous.

A homogeneous linear system is always solvable since x = 0 is always a solution. As such, this solution
is not very interesting; we call it the trivial solution. A homogeneous linear system may possess other
non-trivial solutions (i.e. solutions x �= 0), this is where we shall focus our attention today.

Lemma 7.7. Suppose x1 and x2 are solutions of a homogeneous system Ax = 0. Then so is any linear

combination rx1 + sx2 of x1 and x2.

Proof. Since x1 and x2 are solution of Ax = 0 we have

Ax1 = 0 = Ax2

But then

A (rx1 + sx2) = A(rx1) +A(sx2)

= r (Ax1) + s (Ax2)

= r0+ s0

= 0

so rx1 + sx2 is also a solution.

Theorem 7.8. The solution space of a homogeneous linear system is a subspace of Rn.

Proof. The preceding lemma demonstrates that the solution space of a homogeneous linear system is
closed under both vector addition (take r = 1 and s = 1 in the proof of the preceding lemma) and scalar
multiplication (let r be any real number and take s = 0, in the proof of the lemma) . Therefore, it is a
subspace of Rn.
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3. Subspaces Associated with Matrices

Definition 7.9. The row space of an m× n matrix A is the span of row vectors of A.

Since the row vectors of an m× n matrix are n-dimensional vectors, the row space of an m× n matrix is a

subspace of Rn.

Definition 7.10. The column space of an m× n matrix A is the span of column vectors of A.

Since the column vectors of an m × n matrix are m-dimensional vectors, the column space of an m × n

matrix is a subspace of Rm.

Definition 7.11. The null space of an m× n matrix A is the solution set of homogeneous linear system

Ax = 0.

By the theorem of the proceding section, the null space of an m× n matrix A will be a subspace of Rn.

Consider now a non-homogeneous linear system

Ax = b

The left hand side of such an equation is




a11 a12 · · · a1n

a21 a22 · · · a2n

... · · ·

. . .
...

am1 am2 · · · amn







x1

x2

...

xn


 =




a11x1 + a12x2 + · · ·a1nxn

a21x1 + a22x2 + · · · + a2nxn

...

am1x1 + am2x2 + · · · + amnxn




= x1




a11

a21

...

am1


+ x2




a12

a22

...

am2


+ · · ·xn




a1n

a2n

...

amn




The final expression on the right hand side is evidently a linear combination of the column vectors of A.

The consistency of the equation Ax = b then requires the column vector b to also lie within the span of

the column vectors of A. Thus we have

Theorem 7.12. A linear system Ax = b is consistent if and only if b lies in the column space of A.

4. Bases

Consider the subspace generated by the following three vectors in R3:

v1 =




1
0
1


 , v2 =




1
1
0


 , v3 =




0
−1
1




It turns out that this is the same as the subspace generated from just v1 and v2. To see this note that

v3 =




0
1
−1


 =




1
0
1


−




1
1
0


 = v1 + (−1)v2
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But any vector w in span (v1,v2,v3) is expressible in the form

w = c1v1 + c2v2 + c3v3

= c1v1 + c2v2 + c3 (v1 − v2)

= (c1 + c3)v1 + (c2 − c3)v2

∈ span (v1,v2)

For reasons of effficiency alone, it is natural to try to find the minimum number of vectors needed to specify
every vector in a subspace W . Such a set will be called a basis for W .

There is also another reason to be interested in basis vectors. Consider the vector

w =




2
1
1




In terms of the vectors v1, v2, and v3, we can write this as either

w = 3v1 − v2 − 2v3

or

w = −2v1 + 4v2 + 3v3

or even

w = −2v1 + 4v2 + 3v3

However, there is only one way to represent w as a linear combination of the vectors v1 and v2. For the
condition w = c1v1 − c2v2 requires


2
1
1


 = c1




1
0
1


+ c2




1
1
0


 =




c1 + c2
c2
c1




is equivalent to the following linear system

c1 + c2 = 2

c2 = 1

c1 = 1

which obviously as c1 = 1 and c2 = 1 as its only solution.

This motivates the following definition.

Definition 7.13. Let W be a subspace of Rn. A subset {w1,w2, · · · ,wk} of W is called a basis for W if

every vector in W can be uniquely expressed as linear combination of the vectors w1,w2, · · · ,wk.

Theorem 7.14. A set of vectors {w1,w2, · · · ,wk} is a basis for the subspace W generated by {w1,w2, · · · ,wk}
if and only if

r1w1 + r2w2 + · · ·+ rkwk = 0 implies 0 = r1 = r2 = · · · = rk

Proof.

⇒ Suppose {w1,w2, · · · ,wk} is a basis for W = span (w1,w2, · · · ,wk). Then every vector in W can
be uniquely specfied as a vector of the form

v = r1w1 + r2w2 + · · ·+ rkwk ; r1, r2, . . . , rk ∈ R

In particular, the zero vector

0 = (0)w1 + (0)w2 + · · ·+ (0)wk(7.1)
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lies in W . Because {w1,w2, · · · ,wk} is assumed to be a basis, the linear combination on the right hand
side of (7.1) must be the unique linear combination of the vectors w1, . . . ,wk that is equal to 0. Hence,

r1w1 + r2w2 + · · ·+ rkwk = 0 implies 0 = r1 = r2 = · · · = rk

⇐ Suppose

r1w1 + r2w2 + · · ·+ rkwk = 0 implies 0 = r1 = r2 = · · · = rk

We want to show that {w1,w2, · · · ,wk} is a basis for W = span (w1,w2, · · · ,wk). In other words, we need
to show that there is only one choice of coefficients r1, . . . , rk such that a vector v ∈ W can be expressed
in the form v =r1w1 + r2w2 + · · ·+ rkwk. Suppose there were in fact two distinct ways of representing v :

v = r1w1 + r2w2 + · · ·+ rkwk(7.2)

v = s1w1 + s2w2 + · · ·+ skwk(7.3)

Subtracting the second equation from the first yields

0 = (r1 − s1)w1 + (r2 − s2)w2 + · · ·+ (rk − sk)wk

Our hypothesis now implies

0 = r1 − s1 = r2 − s2 = · · · = rk − sk

In other words

r1 = s1

r2 = s2

...

rk = sk

and so the two linear combinations on the right hand sides of (7.2) and (7.3) must be identical.

Theorem 7.15. Let A be an n× n matrix. Then the following statements are equivalent.

1. The linear system Ax = b has a unique solution for each vector b ∈ Rn.

2. The matrix A is row equivalent to the identity matrix.

3. The matrix A is invertible.

4. The column vectors of A form a basis for Rn.

Proof. We have already demonstrated the equivalence of statements 2, 3 and 4. It therefore suffices to show

that statement 4 is equivalent to statement 1.

To see that statement 4 implies statement 1, suppose that the column vectors c1,c2, . . . ,c
n

ofA form a basis

for Rn. Then by Theorem 7.12, the linear systemAx = b is consistent for all vectors b ∈ span (c1, . . . ,cn) =
R
n. But a direct calculation reveals

b = Ax = x1c1 + x2c2 + · · · + xncn

Because the vectors c1, . . . ,cn form a basis, there choice of coefficients x1, x2, . . . , xn must be unique.
Therefore, the linear system Ax = b has a unique solution for each vector b ∈ R

n.

On the other hand, suppose the linear system Ax = b has a unique solution for each vector b ∈ R
n. In

particular, this must be true for b = 0. Therefore, there is only one choice of coefficients x1, x2, . . . , xn

such that

0 = x1c1 + x2c2 + · · · + xncn = Ax

By the preceding theorem we can conclude that the column vectors of A form a basis for Rn.

Example 7.16. Show that the vectors v1 = (1,1, 3), v2 = (3, 0,4), and v3 = (1,4,−1) form a basis for R3.
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By the preceding theorem, it suffices to show that the matrix

A =




1 3 1

1 0 4

3 4 −1




is invertible. Row reducing A yields


1 3 1

1 0 4

3 4 −1


 R2 → R2 −R1

R3 → R3 − 3R1
−−−−−−−−−−−−−→




1 3 1

0 −3 3

0 −5 −4


 R3 → R3 −

5

3
R2

−−−−−−−−−−−→




1 3 1

0 −3 3

0 0 −9




The matrix on the far right is upper triangular so it’s obviously invertible. Hence, A is invertible; hence

the column vectors of A form a basis for R3; hence the vectors v1, v2, and v3 form a basis for R3.

The preceding theorem is applicable only to square matrices A and linear systems of n equations in n

unknowns. It can be extended to more general matrices and linear systems in the following manner.

Theorem 7.17. Let A be an m× n matrix. Then the following are equivalent.

1. Each consistent system Ax = b has a unique solution.

2. The reduced row echelon form of A consists of the n × n identity matrix followed by m − n rows

containing only zeros.

3. The column vectors of A form a basis for the column space of A.

Proof.

1 ⇐⇒ 2 : From Theorem 5.8 of Lecture 5 (Theorem 1.7 in text), we know that a consistent linear system
Ax = b has a unique solution if and only if A is row equivalent to a matrix A′ in row-echelon form such

that every column of A′ has a pivot. Since A, and hence A′
, has n columns, we can conclude that the

solution of every consistent linear system Ax = b is unique if and only if we have must have n pivots. In

order to have n pivots the number m of rows must be ≥ n. When n = m there will be one pivot for each

row, and the pivots will all reside along the diagonal, like so

A
′ =




a11 a12 · · · a1n

0 a22 · · · a2n

...
...

. . .
...

0 0 · · · ann




occuring in at least n rows. If A′ is further reduced to a matrix A
′′ in reduced row-echelon form, then

all the pivots are re-scaled to 1 and all the entries above the pivots are equal to 0. Thus,

A
′′ =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 = I

If m > n, we still require n pivots, that means the only way we can consistently add rows to the picture
above is by adding rows without pivots; i.e., rows containing only 0’s.

1 ⇐⇒ 3 : Suppose Ax = b has a unique solution for each b in the column space C(A) of A. (Recall b
must lie in the column space of A in order for the linear system to be consistent.) Then, if we denote the
column vectors of A by c1,c2, . . . ,cn we have

b = Ax ≡ x1c1 + x2c2 + · · ·+ xncn , for all b ∈ C(A) ≡ span (c1, c2, . . . , cn)

If the solution x is unique, then there is only one such linear combination of the column vectors ci for each
vector b ∈ C(A). Hence, the column vectors ci provide a basis for C(A). On the other hand, if the column
vectors were not a basis for C(A) ≡ span (c1, c2, . . . , cn), then that would mean that there are vectors b
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lying in C(A) such that the expansion b = x1c1 +x2c2 + · · ·+xncn in terms of the ci is not unique. Hence,
a solution x to Ax = b would not be unique.

Theorem 7.18. Let Ax = b be a non-homogeneous linear system, and let p be any particular solution of

this sytem. Then every solution of Ax = b can be expressed in the form

x = p+h

where h is a solution of the corresponding homogeneous system Ax = 0.

Proof. Suppose p and x1 are both solutions of Ax = b. Then set

h = x1 −p

Then h satisfies

Ah = A (x1 − p) = Ax1 −Ap = b−b = 0

Hence, x1 = p+h with h a solution of Ax = 0.


