LECTURE 7

Subspaces of R"

1. Subspaces

DEFINTTION 7.1. A subset W of R™ is said to be closed under vector addition if for all u,v € W,
u+v is also in W. If rv is in W for all vectors v.€ W and all scalars r € R, then we say thal W is
closed under scalar multiplication. A non-empty subset W of R™ that is closed under both vector addition
and scalar multiplication is called a subspace of R™.

EXAMPLE 7.2. Let u= (1,0) and v = (0,2) be vectors in R%Z. We can construct a subset that closed under
vector addition as follows.

Wo={weR"|w=ju+kv ; j,k positive integers}
To see that this set is closed under vector addition, let w,w’ € W,. Then
w = ju+4kv
w = jlutk'v
for some positive integers 7, k, 7', and k’. But then there are positive integers 7, k, 7’ and &' such that
w+w =(Gut+kv)+ (Gut+tkv)=0G+i)u+(k+k)veWwW
because both (j + j') and (k + k') ar e positive integers if j, %, j', and k' are positive integers.

The set Wy is not a subspace, however; because it is not closed under scalar multiplication. To see this,

note that the vector
1 1
2 2

can not be represented as sum of u and v with positive integer coeflicients.

ExaMPLE 7.3. The preceding example, however, does provide a clue as to one way to constructing a sub-
space. Let u = (1,0) and v = (0,2) be vectors in R?. Consider the set

W={weR"|w=ju+kv ; jkeR}

This is closed under vector addition because if w, w’ € W, then there are real numbers r, s,7’ and s’ such
that

W = ru+ sv

w = ru+ts'v
But then
wH+w=_Fr+rYut+(s+s)vew
since (r+7') € R and (s+ s') € R. And, for any real number ¢
tw = (tr)u+ (ts)v e W
since (tr) € R and (¢s) € R.

The following theorem generalizes this last example.
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THEOREM 7.4. Let {vy,...,vy} be a set of vectors in R™. Then the span of {vy,..., vy} is a subspace of
R™.

Proof. Recall that the span of a set of vector is the set of all possible linear combinations of those vectors.
Set
W =span (vi,... ,vg) ={weR" |w=c¢;vi +cavo+---+ Ve ; c1,¢,...,¢, €ER}

Then for any vectors w, w’ € W we have

W = (C1Vi+CVve+---4+CpVg
! ! ! !
W = CVi+Ccvet--+ vV
for some choice of real numbers ¢y, ... ,¢; and ¢f,... ,c}.. But then

wH+w =(cr+c))vi+(ca+cy)va+--+(cp+c) v €W
and if ¢ is any real number
tw=(tcr)vi+ () va+ -+ (teg) v e W

REMARK 7.5. We shall often refer to the span of a set {vy,...,vy} of vectors in R" as the subspace
generated by {vy,...,vs}.

2. Solutions of Homogeneous Systems

We now come to another fundamental way of realizing a subspace of R™.

DEFINTTION 7.6. A linear system of the form Ax = 0 is called homogeneous.

A homogeneous linear system is always solvable since x = 0 is always a solution. As such, this solution
is not very interesting; we call it the trivial solution. A homogeneous linear system may possess other
non-trivial solutions (i.e. solutions x # 0), this is where we shall focus our attention today.

LEMMA 7.7. Suppose x1 and Xo are solutions of a homogeneous system Ax = 0. Then so is any linear
combination rx, + sXo of X1 and Xa.

Proof. Since x; and X, are solution of Ax = 0 we have

Ax; =0=Ax>
But then
A (rx; +sx2) = A(rxy) + A(sxz)
= r(Ax;)+ s(Ax2)
= 70450
0

SO rX; + $Xs 1is also a solution.

THEOREM 7.8. The solution space of a homogeneous linear system is a subspace of R™.

Proof. The preceding lemma demonstrates that the solution space of a homogeneous linear system is
closed under both vector addition (take r = 1 and s = 1 in the proof of the preceding lemma) and scalar
multiplication (let r be any real number and take s = 0, in the proof of the lemma) . Therefore, it is a
subspace of R".
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3. Subspaces Associated with Matrices

DEFINTTION 7.9. The row space of an m X n mairiz A is the span of row vectors of A.

Since the row vectors of an m X n matrix are n-dimensional vectors, the row space of an m X n matrix is a
subspace of R".

DEFINTTION 7.10. The column space of an m x n mairiz A is the span of column veclors of A.

Since the column vectors of an m x n matrix are m-dimensional vectors, the column space of an m X n
matrix is a subspace of R™.

DEFINTTION 7.11. The null space of an m x n matriz A is the solution set of homogeneous linear system
Ax =0.

By the theorem of the proceding section, the null space of an m X n matrix A will be a subspace of R".

Consider now a non-homogeneous linear system

Ax=Db
The left hand side of such an equation is

@11 Q12 o Qin T 1171 + A12T2 + -+ - Q1T

Q21 Q22 - Qg Ta 21%1 + Q2222 + - - - + Q2T

Am1 Am?2 o Amn Tn Am1T1 + Am2T2 + -+ AmnTn
a11 @12 G1n
21 22 a2n

= @ | . |+@| . |+ T

Am1 Am?2 Amn

The final expression on the right hand side is evidently a linear combination of the column vectors of A.
The consistency of the equation Ax = b then requires the column vector b to also lie within the span of
the column vectors of A. Thus we have

THEOREM 7.12. A linear system Ax = b is consistent if and only if b lies in the column space of A.

4, Bases

Consider the subspace generated by the following three vectors in R?:

1 1 0
vi=10 , vo= |1 , vg=|[ —1
1 0 1

It turns out that this is the same as the subspace generated from just v and va. To see this note that

0 1 1
V3 = 1 = 0 — 1 =v; + (—1)V2
—1 1 0
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But any vector w in span (vq, Vg, vy) is expressible in the form

W = (C1Vy]+cve+cC3vs

c1vy + vy +¢3 (Vi — Vo)

(c1+e3)vi+(c2—c3)veo
span (vy,va)

m

For reasons of effficiency alone, it is natural to try to find the minimum number of vectors needed to specify
every vector in a subspace W. Such a set will be called a basis for .

There is also another reason to be interested in basis vectors. Consider the vector

2
w=|1
1

In terms of the vectors vi, vo, and vg, we can write this as either
W =3vy — Vo — 2v3
or
W= —2vi +4vo + 3vg
or even
w = —2vy 4+ 4vg + 3v3

However, there is only one way to represent w as a linear combination of the vectors vi and vy. For the
condition w = ¢; vy — caVa requires

2 1 1 c1+c2
1 | =c | 0| 4+ec| 1] = C2
1 1 0 c1
is equivalent to the following linear system
ci+c = 2
Cy =
T = 1

which obviously as ¢; = 1 and ¢, =1 as its only solution.

This motivates the following definition.

DEFINITION 7.13. Let W be a subspace of R™. A subset {wy,wg,--- , W} of W is called a basis for W if

every vector in W can be uniquely expressed as linear combination of the vectors wi,wo, -+ , Wp.
THEOREM 7.14. A set of vectors {wy,wa,--- , Wy} is a basis for the subspace W generated by {wy,wg,--- , W}
if and only if
TIW1 +7oWo + -+ 1w =0 implies O0=ri=ro=---=rg
Proof.
= Suppose {w1,Wa,--- , Wy} is a basis for W = span (wy, wg,--- ,Wg). Then every vector in W can

be uniquely specfied as a vector of the form
V=riwi+rewa+ - +1pWr 3 T1,72,...,T, €R
In particular, the zero vector

(7.1) 0 = (0)wy + (O)wa + - -~ + (0)wy,
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lies in W. Because {wy, Wy, -- ,W;} is assumed to be a basis, the linear combination on the right hand
side of (7.1) must be the unique linear combination of the vectors wy,... ,wy that is equal to 0. Hence,

W1 +7rowWa 4+ -+ 1w =0 implies O0=r;=ro=---=ry

= Suppose
TIW1 +72Wo + -+ 1w = 0 implies O=7ri=7ro=---=71}

We want to show that {wy, wa,--- , Wy} is a basis for W = span (wy, wa,--- ,Wy). In other words, we need
to show that there is only one choice of coeflicients rq, ... , 7 such that a vector v € W can be expressed
in the form v =rywy +rowg +-- - +7rpwy. Suppose there were in fact two distinct ways of representing v :

(7.2) vV = rmwi+rews+ -+ 1wy
(7.3) V = $1Wy + SoWp + -+ §pWp
Subtracting the second equation from the first yields

0=(r1—s1) w1+ (re—s2)Wa +-- -+ (1 — ) Wy,

Our hypothesis now implies

O=ri—8=7r9o— 8 =---=7, — 8
In other words
T = S1
T2 = 52
Tk = Sk

and so the two linear combinations on the right hand sides of (7.2) and (7.3) must be identical.

THEOREM 7.15. Let A be an n x n malriz. Then the following statements are equivalent.

The linear system Ax = b has a unique solution for each vector b € R™.
The matrix A is row equivalent to the identity matriz.

The matriz A is invertible.

The column vectors of A form a basis for R™.

Ll

Proof. We have already demonstrated the equivalence of statements 2, 3 and 4. It therefore suffices to show
that statement 4 is equivalent to statement 1.

To see that statement 4 implies statement 1, suppose that the column vectors ¢q,cs,... , ¢, of A form a basis
for R™. Then by Theorem 7.12, the linear system Ax = b is consistent for all vectors b € span (c1,... ,cp) =
R™. But a direct calculation reveals

b=Ax=xi¢c; +x2¢2+---+x,Cp
Because the vectors ci,...,c, form a basis, there choice of coefficients x1,z2,... ,z, must be unique.

Therefore, the linear system Ax = b has a unique solution for each vector b € R™.

On the other hand, suppose the linear system Ax = b has a unique solution for each vector b € R™. In
particular, this must be true for b = 0. Therefore, there is only one choice of coeflicients x1,x2,... , 2y
such that

0=1=x1¢y +22C2+---+x¢, = AX
By the preceding theorem we can conclude that the column vectors of A form a basis for R™.

EXAMPLE 7.16. Show that the vectors v = (1,1,3), vo = (3,0,4), and v3 = (1,4,—1) form a basis for R3.



4. BASES 6

By the preceding theorem, it suffices to show that the matrix

1 3 1
A=|10 4
3 4 —1
is invertible. Row reducing A yields
1 3 1 1 3 1 1 3 1
- 5
10 4 52:52_3% 0 =3 3 | Ry—Rs—;Ry |0 -3 3
3 4 —1 3 3 ! 0 -5 —4 —_— 0 0 -9

The matrix on the far right is upper triangular so it’s obviously invertible. Hence, A is invertible; hence
the column vectors of A form a basis for R?; hence the vectors vy, va, and vs form a basis for R?.

The preceding theorem is applicable only to square matrices A and linear systems of n equations in n
unknowns. It can be extended to more general matrices and linear systems in the following manner.

THEOREM 7.17. Let A be an m x n matriz. Then the following are equivalent.

1. Each consistent system Ax = b has a unique solution.

2. The reduced row echelon form of A consists of the n x n identity matrix followed by m — n rows
containing only zeros.

3. The column vectors of A form a basis for the column space of A.

Proof.

1 <= 2 : From Theorem 5.8 of Lecture 5 (Theorem 1.7 in text), we know that a consistent linear system
Ax = b has a unique solution if and only if A is row equivalent to a matrix A’ in row-echelon form such
that every column of A’ has a pivot. Since A, and hence A’, has n columns, we can conclude that the
solution of every consistent linear system Ax = b is unique if and only if we have must have n pivots. In
order to have n pivots the number m of rows must be > n. When n = m there will be one pivot for each
row, and the pivots will all reside along the diagonal, like so

11 Qi2 - Gin
A 0 axp -+ a2,
0 0 - apn

occuring in at least n rows. If A’ is further reduced to a matrix A" in reduced row-echelon form, then
all the pivots are re-scaled to 1 and all the entries above the pivots are equal to 0. Thus,

01 -~ 0
A= . =1

If m > n, we still require n pivots, that means the only way we can consistently add rows to the picture
above is by adding rows without pivots; i.e., rows containing only 0’s.

1 <= 3 : Suppose Ax = b has a unique solution for each b in the column space C(A) of A. (Recall b
must lie in the column space of A in order for the linear system to be consistent.) Then, if we denote the

column vectors of A by ¢1,co,...,c, we have
b=Ax==zc; +2oco+---+x,¢, , forallbeC(A)=span(cq,ca,...,cy)

If the solution x is unique, then there is only one such linear combination of the column vectors c¢; for each
vector b € C(A). Hence, the column vectors c; provide a basis for C(A). On the other hand, if the column
vectors were not a basis for C(A) = span (c1,co,... ,Cy), then that would mean that there are vectors b
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lying in C(A) such that the expansion b = z1¢; +xgc3 +- - -+, in terms of the ¢; is not unique. Hence,
a solution x to Ax = b would not be unique.

THEOREM 7.18. Lel Ax = b be a non-homogeneous linear system, and let p be any particular solution of
this sytem. Then every solution of Ax = b can be expressed in the form

x=p+h

where h is a solution of the corresponding homogeneous system Ax = 0.

Proof. Suppose p and x; are both solutions of Ax = b. Then set
h=x -p
Then h satisfies
Ah=A(x;—p)=Ax1—Ap=b—-b=0
Hence, x; = p + h with h a solution of Ax = 0.



