
LECTURE 4

Matrices and Matrix Algebra, Cont’d

1. Examples of Matrix Multiplication

Recall from the preceding lecture our definition of matrix multiplication.

Definition 4.1. Let A be an m by n matrix and let B be an s by t matrix. If n �= s the matrix product
AB is not defined (i.e. if the number of columns of A does not equal the numbe of rows of B, the matrix
product is not defined). If n = s, then the matrix product AB is defined and is the m by t matrix whose
entries (AB)ij are prescribed by

(AB)ij = ai1b1j + ai2b2j + · · ·+ ainbnj

=
n∑

k=1

aikbkj

In other words, the entry in jth column of the ith row of the product matrix AB is the dot product the vector

correspondind to the ith row of A and the vector corresponding to the jth column of B.

Let’s now compute some illustrative examples

Example 4.2. 
 1

2
3




 1 −1

2 −1
1 −2


 does not exist

Because we need the same number of columns in the first factor as there are rows in the second factor.

Example 4.3. [
1 2
−1 2

] [
1
−1

]
=

[
−1
−3

]

[
1 −1

] [ 1 2
−1 2

]
=
[
2 0

]

So even though the 2 by 1 matrix

[
1
−1

]
and the 1 by 2 matrix

[
1 −1

]
correspond to the same

2-dimensional vector (1,−1), their products with the 2 by 2 matrix

[
1 2
−1 2

]
are not the same.

Example 4.4. [
2 1
−1 1

][
1 −1
−1 2

]
=

[
1 0
−2 3

]

[
1 −1
−1 2

] [
2 1
−1 1

]
=

[
3 0
−4 1

]

1
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So the product AB of two matrices A and B is not necessarily the same as the product BA. In other
words, matrix multiplication is not commutative in general. Indeed, it can happen that AB exists but BA
is not even defined.

Note that this circumstances partially explains the paradox of the first example. Let A denote the 2 by 2

matrix

[
1 2
−1 2

]
. If we interprete the vector (1,−1) as a 2 by 1 matrix v , then only the product Av is

defined; and if we interprete the vector (1,−1) as a 1 by 2 matrix then only the product vA is defined

Example 4.5. [
0 0
1 0

] [
0 0
1 0

]
=

[
0 0
0 0

]

Recall that for real numbers x2 = 0 implies x = 0. This is evidently not the case for matrices: it can happen
that A2 = 0 but A is not equal to the zero matrix 0.

Example 4.6. [
−1 1
0 0

] [
1 1
1 1

]
=

[
0 0
0 0

]

Recall that for real numbers xy = 0 implies either x = 0 or y = 0. This is evidently not the case for
matrices: it can happen that AB = 0 but neither A or B is equal to the zero matrix 0.

Example 4.7. 


1 0 0
0 1 0
0 0 1






a11 a12 a13

a21 a22 a23

a31 a32 a33


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







a11 a12 a13

a21 a22 a23

a31 a32 a33






1 0 0
0 1 0
0 0 1


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33




And so muliplying any 3 by 3 matrix A by the matrix

I =




1 0 0
0 1 0
0 0 1




just replicates the matrix A:

AI = IA =A

The example above generalizes to arbitrary n by n matrices (i.e. “square matrices”). This motivates the
following definition.

Definition 4.8. Let I be the n by n matrix whose entries are given by

Iij =

{
1 if i = j

0 if i �= j

In other words, I is an n by n matrix with 1’s along the diagonal (running from the upper left to the lower
right) and 0’s everywhere else. We call such a matrix the n by n identity matrix. It has the property that

IA =AI =A for all n by n matrices A except the 0 matrix.

2. Other Matrix Operations

Definition 4.9. Let A be an m by n matrix, and let r be any real number. Then the scalar product rA is

defined as the m by n matrix whose ijth entry is r times the ijth entry of A:

(rA)ij = r(A)ij
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Example 4.10. If

A =

[
1 −1

2 3

]

then

−2A =

[
−2 2

−2 −6

]

Definition 4.11. Let A and B be m by n matrices. Then the matrix sum A+B is defined as the m by n

matrix whose ijth entry is the sum of the ijth entries of A and B:

(A+A)
ij

= (A)ij + (B)ij

Example 4.12. If

A =

[
1 −1

2 3

]
, B =

[
0 1

1 2

]

then

A+B =

[
0 0

3 5

]

Combining these two operations of scalar multiplication and addition we can now from linear combina-

tions of matrices; e.g. 2A− 3B.

Definition 4.13. Let A be an m by n matrix, then the transpose AT of A is the n by m such that
(
A

T
)
ij

= (A)ji

In other words, the entries in the ith row of AT are identical to the entries in the ith column of A.

Example 4.14. If

A =




1 3
−2 1
3 −1




then

A
T =

[
1 −2 3
3 1 −1

]

Example 4.15. Recall that we can interprete an n-dimenional v = (v1, v2, . . . , vn) either as a n by 1 matrix
(which we called a column vector)

c =




v1

v2

...
vn




or as a 1 by n matrix (which we called a row vector)

r =
[

v1 v2 · · · vn

]

Note that

c = r
T

and

r = c
T

Definition 4.16. An n by n matrix with the property that A =A
T is called a symmetric matrix.
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Example 4.17.

A =




1 2 −1
2 3 1
−1 1 2




is a symmetric matrix, but

B =




2 1 1
2 3 1
−1 1 2




is not symmetric because, for example

2 = (B)
21
�=
(
B
T
)
21
≡ (B)

12
= 1

With a little experience it is easy to glance a matrix and determine whether or not it’s symmetric.

Theorem 4.18. Suppose the matrix product AB is defined, then

(AT )T = A

(rA)
T

= rA
T

(A+B)T = A
T +BT

(AB)
T

= B
T
A
T


