Math 2233
Homework Set 9

1. Compute the Laplace transform of the following functions.
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2. Use the formula

we get
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to compute the Laplace transform of sin(bt).

o Let

Then

L [sin(bt)]

f(t) = sin(bt) = 21 (eibt . efibt)
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3. Invert the following Laplace transforms.
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e Note that the denominator is a sum of squares:

ﬁ _ 352+1(2)2 _ <2) ng@)z (3) £ [sin (22)] = £ B Sin(Q:v)]

= f(z) = g sin (2z)
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Since the denominator is easily factorized, we’ll try a partial fractions expansion.
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So now
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e — In this problem, the denominator does not factorize easily, but it can be written as a sum of
squares:
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and so we’ll try to realize it as a linear combination of the Laplace transforms of the form
— b
L [e% cos (bt)] = —>— % , L [esin (bt)] = —————
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e Again the denominator does not factorize easily, so we’ll try to express the denominator as a sum
or difference of squares.
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(s = 1"+ (1)* (s —1)° +(1)°
= L[2e" cos (x) + 3e” sin ()]
= f(x) = 2€" cos (x) + 3e” sin (x)
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e The denominator does not factorize easily, so we’ll try to first try to express it a sum or difference
of squares.
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5L [67230 sin (z)] — 2L [6721‘, cos (z)] =L [56721 sin (z) — 2¢72% cos (2)]
= f(x) = 5e™2 sin (z) — 2¢ 2% cos (z)

4. Use the Laplace transform to solve the given initial value problems.
(@)y"—y —6y=0 ;O =1, y(0)=-1

e Taking the Laplace transform of both sides of the differential equation yields
0 = L' LIy - L[6y]

= ( L[y = sy(0) = y'(0)) = (sL[y] — y(0)) — 6L[y]
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the differential equation for y becomes an algebraic equation for L[y]. To undo this Laplace trans-
form we first carry out a partial fractions expansion of the right hand side of the equation for

Lly].
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This expansion must be valid for all values of s; in particular when s = —2 and when s = 3. In the
former case
we have
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so B = % We then have
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Hence, (taking inverse Laplace transform of both sides)
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M)y =2y +2y=0 ; y0)=0 , ¢y (0)=1

e Taking the Laplace transform of both sides of the differential equation yields

0 = Lyl — sy(0) — ' (0) — 2 (sL[y] — y(0)) + 2L[y]
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We now consult a table of Laplace transform and spot the following identity
b
(s —a)? + b2
which looks just like the right hand side of our expression for L[y] once we thake a =1 and b = 1.
We conclude

L [e* sin(bt)] =

L[y] = L]e” sin(z)]
y(z) = e” sin(x)

y' =2y —2y=0 5 y0)=2 , y(0)=0

e Taking the Laplace transform of the differential equation we get
0 = s°Lly] - sy(0) —y'(0) — 2 (sL[y] — y(0)) — 2L][y]
= (s"—25—-2)Ly] —2s+4
= (s"—25-2)Ly] —2s+4
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so to invert this Laplace transform, the following Laplace transforms (from the table of Laplace
transforms) might be useful.

ﬁ[eat cosh(bt)] = (s _Sa;;l_ B2
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So taking a = 1 and b = v/3 and using the two Laplace transforms above, we have

Lly] = 2L[e" cosh(\/gx)] — %E [em sinh(x/?jx)]
= L |2€" cosh(v/3z) — %em sinh(\/gx)]
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e Taking the Laplace transform of both sides of the differential equation we get

s*Lly] — sy(0) — y'(0) + 2 (sL[y] — y(0)) + L[y] = L[4e"]
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We now determine the partial fractions expansion of the right hand side. The general ansatz is
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and so we will try to find constants A, B, C such that
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Multiplying both sides by (s + 1)3 we get
22 +5s+7=A(s+1)°+B(s+1)+C
Plugging in s = —1 we find
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Plugging in s = 0 yields
7T=A+B+C=A+B+4
or
A+ B=3.
Plugging in s = 1 yields

14=4A+2B+C=4A+2B+4

or

4A+2B =10
or

2A+ B = 5.
‘We now solve

A+B = 3

2A+B = 5

for A and B. Subtracting the first equation from the second we obtain
A+0=2 = A=2

Now the first equation yields
2+B=3 = B=1.

Thus, A =2, B=1, and C =4. Applying this partial fractions expansion to the equation for L[y]
now yields
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Now from a Table of Laplace transforms we find
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Taking the inverse Laplace transform of both sides we finally get

y(t) = (262 +t+2)e".



