
Math 2233
Homework Set 8

1. Determine the lower bound for the radius of convergence of series solutions about each given point xo.

(a) y′′ + 4y′ + 6xy = 0 , x0 = 0
• Since the coefficient functions

p(x) = 4

q(x) = 6x

are perfectly analytic for all x, the differential equation thus possesses no singular points. Thus,
every power series solution

y(x) =

∞∑
n=0

an (x− xo)
n

will converges for all x and all xo. In particular, the radius of convergence for solutions about
xo = 0 will be infinite. �

(b) (x− 1)y′′ + xy′ + 6xy = 0 , x0 = 4
• Since the coefficient functions

p(x) =
x

x− 1

q(x) =
6x

x− 1

are both undefined for x = 1. Therefore, x = 1 is a singular point for this differential equation.
According to the theorem stated in lecture, if

y(x) =

∞∑
n=0

an (x− xo)
n

is a power series solution, then its radius of convergence will be at least as large as the distance
(in the complex plane) from the expansion point xo and the closest singularity of the functions
p(x) and q(x). In the case at hand, x0 = 4 and the closest (in fact, the only) singular point of
the coefficient functions p(x) and q(x) is x = 1. Since

‖4− 1‖ = 3

we can conclude that the radius of convergence of a series solution of the form

y(x) =

∞∑
n=0

an(x− 4)n

will be at least 3. In other words, the series solution will be valide for all x in the interval

|x− 4| < 3

or, equivalently, for all x such that

1 < x < 7

�
(c)

(
4 + x2

)
y′′ + 4xy′ + y = 0 , x0 = 0

• In this case, the coefficient functions

p(x) =
4x

4 + x2

q(x) =
1

4 + x2

both have singularities when

4 + x2 = 0 ⇒ x = ±2i
1



2

These two singularies correspond to the points (0,±2) when we represent points in the complex
plane as points in the two dimenional plane. Under this representation of the complex plane,
the expansion point x0 = 0 corresponds to the point (0, 0). Therefore the distances between
the expansion point and the singularity are

dist(2i, 0) =
√

(0− 0)2 + (2− 0)2 = 2

dist(−2i, 0) =

√
(0− 0)2 + (−2− 0)

2
= 2

Hence, the minimal distance is 2, and so the radius of convergence of a power series solution
about 0 is at least 2. �

(d)
(
1 + x2

)
y′′ + 4xy′ + y = 0 , x0 = 2

• In this case the coefficient functions

p(x) =
4x

1 + x2

q(x) =
1

1 + x2

both have singularities when

1 + x2 = 0 ⇒ x = ±i

These two singularies correspond to the points (0,±1) when we represent points in the complex
plane as points in the two dimenional plane. Under this representation of the complex plane,
the expansion point x0 = 2 corresponds to the point (2, 0). Therefore the distances between
the expansion point and the singularity are

dist(i, 2) =
√

(0− 2)2 + (1− 0)2 =
√

5

dist(−i, 2) = (0− 2)2 + (−1− 0)
2

=
√

5

Hence, the distance between the expansion point and the closest singularity is
√

5 and so the
radius of convergence of a power series solution about the point xo = 2 will be at least

√
5. �

2. Determine the singular points of the following differential equations and state whether they are regular
or irregular singular points.

(a) xy′′ + (1− x)y′ + xy = 0
• In this case, the coefficient functions are

p(x) =
1− x

x
q(x) = 1

Since p(x) is undefined for x = 0, 0 is a singular point. Since the limits

lim
x→0

(x− 0)p(x) = lim
x→0

(1− x) = 1

lim
x→0

(x− 0)2q(x) = lim
x→0

x3 = 0

both exist, x = 0 is a regular singular point. Alternatively, one could say that because the
degree of the singularity of the function p(x) at the point x = 0 is less than or equal to 1 and
the degree of the singularity of the function q(x) is less than or equal to 2, we have regular
singular point at x = 0. �

(b) x2(1− x)2y′′ + 2xy + 4y = 0
• In this case, the coefficient functions are

p(x) =
2

x(1− x)2

q(x) =
4

x2(1− x)2
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The function p(x) evidently has a singularity of degree 1 at x = 0 and a singularity of degree 2
at x = 1. The function q(x) has singularities of degree 2 at x = 0 and x = 1. In order to be a
regularity singular point the degree of the singularity of p(x) must not exceed 1 and the degree
of the singularity of q(x) must not exceed 2. Therefore, x = 0 is a regular singular point and
x = 1 is an irregular singular point.. �

(c) (1− x2)2y′′ + x(1− x)y′ + (1 + x)y = 0
• In this case,the coefficient functions are

p(x) =
x(1− x)

(1− x2)2
=

x(1− x)

(1− x)2(1 + x)2
=

x

(1− x)(1 + x)2

q(x) =
1 + x

(1− x)2(1 + x)2
=

1

(1− x)2(1 + x)

The function p(x) evidently has a singularity of degree 1 at x = 1 and a singularity of degree
2 at x = −1. The function q(x) has a singularity of degree 1 at x = 1 and a singularity of
degree 2 at x = −1. In order to be a regularity singular point the degree of the singularity of
p(x) must not exceed 1 and the degree of the singularity of q(x) must not exceed 2. Therefore,
x = 1 is a regular singular point and x = −1 is an irregular singular point. �

3. The following differential equation has a regular singular point at x = 0. Determine the indicial equations,
the roots of the indicial equations, the recursion relations, and the first four terms of two linearly independent
series solutions.

2xy′′ + y′ + xy = 0 .

• We make the ansatz

y(x) =

∞∑
n=0

anx
n+r , a0 6= 0 ,

and plug into the differential equation to obtain

0 = 2x
∞∑

n=0

(n + r)(n + r − 1)anx
n+r−2 +

∞∑
n=0

(n + r)anx
n+r−1 + x

∞∑
n=0

anx
n+r

=

∞∑
n=0

2(n + r)(n + r − 1)anx
n+r−1 +

∞∑
n=0

(n + r)anx
n+r−1 +

∑
n=0

anx
n+r+1

=

∞∑
n=0

(2(n + r)(n + r − 1) + (n + r)) anx
n+r−1 +

∞∑
n=2

an−2x
n+r−1

= (2r(r − 1) + r) a0x
r−1 + (2(1 + r)r + 1 + r) a1x

r +

∞∑
n=2

(2(n + r)(n + r − 1) + (n + r)) anx
n+r−1

+

∞∑
n=2

an−2x
n+r−1

=
(
2r2 − r

)
a0x

r−1 +
(
2r2 + 3r + 1

)
a1x

r +

∞∑
n=2

[(2(n + r)(n + r − 1) + (n + r)) an + an−2]xn+r−1

=
(
2r2 − r

)
a0x

r−1 +
(
2r2 + 3r + 1

)
a1x

r +

∞∑
n=2

[(
2(n + r)2 − (n + r)

)
an + an−2

]
xn+r−1



4

Setting the total coefficient of xr−1, xr, and xn+r−1 equal to zero we obtain the following equations

0 = (2r − 1) ra0

0 = (2r + 1) (r + 1)) a1

an =
−an−2

2(n + r)2 − (n + r)
n = 2, 3, 4, . . .

Since a0 is assumed to be non-zero the first equation leads to

0 = r(2r − 1) ⇒ r = 0,
1

2
.

If r = 0, then the second equation produces

0 = (0 + 1)(0 + 1)a1 = a1 ⇒ a1 = 0.

The third equation furnishes recursion relations that allow us to express all the even coefficients a2i
in terms of a0 and all the odd coefficients in terms of a1. However, because a1 = 0 only even powers
of x will occur.

To see this, let us first take r = 0. Then the recursion relation is

an =
−an−2
2n2 − n

so

a2 =
a0

8− 2
=
−a0

6

a3 =
−a1

18− 3
= 0

a4 =
−a2

32− 4
=

a0
168

a5 =
−a3

50− 5
= 0

...

Thus to order x5 one solution will be

y1(x) = a0

(
1− 1

6
x2 +

1

192
x4 + · · ·

)
To get a second linearly independent solution we solve the recursion relations when r = 1

2 :

an =
−an−2

2
(
n + 1

2

)2
+
(
n + 1

2

) =
−2an−2

(2n + 1)
2 − (2n + 1)

a2 =
−2a0
25− 5

= − 1

10
a0

a3 =
−2a1
49− 7

= 0

a4 =
−2a2
81− 9

=
1

360
a0

a5 =
−2a3

121− 11
= 0

...

So we also have a solution (up to order x5)

y2 = a0x
1/2

(
1− 1

10
x2 +

1

360
x4 + · · ·

)
�
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4.The following differential equations have a regular singular point at x = 0. Determine the indicial equation
and the recursion relations corresponding to the largest root of the indicial equation. Write down the first
four terms of the corresponding series expansion.

(a) xy′′ + y = 0
• This differential equation has a regular singular point at x = 0. Setting

y(x) =
∑
n=0

anx
n+r , a0 6= 0 ,

and plugging into the differential equation we get

0 = x

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−2 +

∞∑
n=0

anx
n+r

=

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−1 +

∞∑
n=0

anx
n+r

In order to combine the two series on the right we first shift the summation on the first by

k + r = n + r − 1 ⇒ k = n− 1
n = k + 1

to obtain

0 =

∞∑
k=−1

(k + 1 + r)(k + r)ak+1x
k+r +

∞∑
k=0

akx
k+r

= (−1 + 1 + r) (−1 + r) a−1+1x
−1+r +

∞∑
k=−1

(k + 1 + r)(k + r)ak+1x
k+r

+

∞∑
k=0

akx
k+r

= r (r − 1) a0x
r−1 +

∞∑
k=0

((k + r + 1)(k + r)ak+1 + ak)xk+r

Demanding that the total coefficient of each power of x vanish we thus obtain

0 = r(r − 1)a0 ⇒ r = 0, 1

0 = (k + r + 1)(k + r)ak+1 + ak ⇒ ak+1 =
−ak

(k + r + 1)(k + r)

Noting that the two roots of the indicial equation r(r − 1) = 0 differ only by an integer, we
follow the instructions in the statement of the problem and look for a solution corresponding
to the larger root r = 1.
For this value of r the recursion relations are

ak+1 =
−ak

(k + 2)(k + 1)

Thus,

a1 =
−a0

(2)(1)
= −a0

2

a2 =
−a1

(3)(2)
=

a0
(3)(2)(2)

=
a0
12

a3 =
−a2

(4)(3)
=

−a0
(4)(3)(12)

= − a0
144
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Thus the first four terms of this series solution will be

y(x) =

∞∑
n=0

anx
n+1

= a0x + a1x
2 + a2x

3 + a3x
4 + · · ·

= a0x−
a0
2
x2 +

a0
12

x3 − a0
144

x4

= a0

(
x− 1

2
x2 +

1

12
x3 − 1

144
x4 + · · ·

)
�

(b) xy′′ + (1− x)y′ − y = 0
• Setting

y(x) =

∞∑
n=0

anx
n+r

and plugging in we obtain

0 = x

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−2 + (1− x)

∞∑
n=0

(n + r)anx
n+r−1

−
∞∑

n=0

anx
n+r

=

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−1 +

∞∑
n=0

(n + r)anx
n+r−1

−
∞∑

n=0

(n + r)anx
n+r −

∞∑
n=0

anx
n+r

=

∞∑
k=−1

(k + 1 + r)(k + r)ak+1x
k+r +

∞∑
k=−1

(k + 1 + r)ak+1x
k+r

−
∞∑
k=0

(k + r)akx
k+r −

∞∑
k=0

akx
k+r

= r(r − 1)a0x
r−1 +

∞∑
k=0

(k + 1 + r)(k + r)ak+1x
k+r

+ra0x
r−1 +

∞∑
k=0

(k + 1 + r)ak+1x
k+r

−
∞∑
k=0

(k + r)akx
k+r −

∞∑
k=0

akx
k+r

= r2a0x
r−1

+

∞∑
k=0

(((k + r + 1)(k + r) + (k + r + 1)) ak+1 − ((k + r) + 1) ak)xk+r

Setting the total coefficient of each power of x equal to zero we obtain

r2 = 0

ak+1 =
ak

k + r + 1

The indicial equation r2 = 0 implies r = 0, and so the recursion relations become

ak+1 =
ak

k + 1
.
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Hence

a1 =
a0
1

= a0

a2 =
a1
2

=
1

2
a0

a3 =
a2
3

=
1

(3)(2)
a0

a4 =
a3
4

=
1

(4)(3)(2)
a0

...

an =
1

n!
a0

Thus,

y(x) =

∞∑
n=0

anx
n+0

=

∞∑
n=0

a0
xn

n!

= a0e
x

�


