
Math 2233
Homework Set 5

1. Determine whether the given equation is linear or nonlinear. If it is linear, write it in standard form and
state whether it is homogeneous or non-homogeneous.

(a) xy′′ + 2x3y′ + y = 0

• The equation is linear. To put it in standard form we divide through by x to get

y′′ + 2x2y′ +
1

x
= 0.

This is a homogeneous linear differential equation. �

(b) y′′ + xy′ + y2 = 2x

• This equation is non-linear due to the presence of the y2 term. �

(c) 3y′′ + 2y′ + y = x5

• This equation is linear. To put it in standard form we divide through by 3 to get

y′′ +
2

3
y′ +

1

3
y =

1

3
x5.

This equation is non-homogeneous, due to the presence of the 1
3x

5 on the right hand side when it’s
written in standard form. �

2. Verify that the two given functions are linearly independent solutions of the given homogeneous equation
and then find the general solution.

(a) y′′ + 9y = 0, y1(x) = sin(3x), y2(x) = cos(3x)

•

y′′1 + 9y1 = (3 cos(3x))
′
+ 9 sin(3x)

= 3 (−3 sin(3x)) + 9 sin(3x)

= (−9 + 9) sin(3x)

= 0

y′′2 + 9y2 = (−3 sin(3x))
′
+ 9 cos(3x)

= −3 (3 cos(3x)) + 9 cos(3x)

= (−9 + 9) cos(3x)

= 0

So both y1 and y2 are solutions. They are linearly independent since

W [y1, y2](x) ≡ y1(x)y′2(x)− y′1(x)y2(x)

= sin(3x) (−3 sin(3x))− (3 cos(x)) cos(3x)

= −3
(
sin2(x) + cos2(x)

)
= −3 · 1
= −3

6= 0
1
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Since y1(x) and y2(x) are two linearly independent solutions of the homogeneous linear equation
y′′ + 9y = 0, the general solution of this equation is

y(x) = c1y1(x) + c2y2(x)

= c1 sin(3x) + c2 cos(3x)

�

(b) y′′ + 2y′ − 15y = 0, y1(x) = e3x, y2(x) = e−5x

•

y′′1 + 2y′1 − 15y1 = (3)(3)e3x + 2
(
3e3x

)
− 15e3x

= (9 + 6− 15) e3x

= 0

y′′2 + 2y′2 − 15y2 = (−5)(−5)e−5x + 2
(
−5e−5x

)
− 15e−5z

= (25− 10− 15) e−5x

= 0

So both y1(x) and y2(x) are solutions. They are also linearly independent since

W [y1, y2](x) ≡ y1(x)y′2(x)− y′1(x)y2(x)

= e3x
(
−5e−5x

)
−
(
3e3x

)
e−5x

= (−5− 3) e−2x

= −8e−3x

6= 0

Since y1(x) and y2(x) are two linearly independent solutions of the homogeneous linear equation
y′′ + 2y′ − 15y = 0, the general solution of this equation is

y(x) = c1y1(x) + c2y2(x)

= c1e
3x + c2e

−5x

�

(c) y′′ + 4y′ + 4y = 0, y1(x) = e−2x, y2(x) = xe−2x

•

y′′1 + 4y′1 − 4y1 = (−2)(−2)e−2z + 4
(
−2e−2x

)
+ 4e−2z

= (4− 8 + 4) e−2x

= 0

y′′2 + 4y′2 + 4y2 =
(
e−2x − 2xe−2x

)′
+ 4

(
e−2x − 2xe−2x

)
+ 4xe−2x

=
(
−2e−2x − 2e−2x + 4xe−2x

)
+ 4

(
e−2x − 2xe−2x

)
+ 4xe−2x

= (−2− 2 + 4) e−2x + (4− 8 + 4)xe−2x

= 0 + 0

= 0
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So both y1(x) and y2(x) are solutions. They are also linearly independent since

W [y1, y2](x) ≡ y1(x)y′2(x)− y′1(x)y2(x)

= e−2x
(
e−2x − 2xe−2x

)
−
(
−2e−2x

)
xe−2x

= e−4x − 2xe−4x + 2xe−2x

= e−4x

6= 0

Since y1(x) and y2(x) are two linearly independent solutions of the homogeneous linear equation
y′′ + 4y′ + 4y = 0, the general solution of this equation is

y(x) = c1y1(x) + c2y2(x)

= c1e
−2x + c2xe

−2x

�

3. Given that y1(x) = e3x is one solution of y′′ − 5y′ + 6y = 0, find a second linearly independent solution
and then write down the general solution.

• To find a second linearly independent solution we apply the Reduction of Order formula

y2(x) = y1(x)

∫ x 1

[y1(s)]
2 exp

[
−
∫ s

p(t)dt

]
ds

For the case at hand, we have y1(x) = e3x and p(x) = −5, so

y2(x) = e3x
∫ x 1

(e3s)
2 exp

[
−
∫ s

(−5)dt

]
ds

= e3x
∫ x

e−6s exp [5s] ds

= e3x
∫ x

e−6se5sds

= e3x
∫ x

e−sds

= e3x
(
−e−x

)
= −e2x

∼ e2x

In the last step we dropped the minus sign simply because if −e2x is a solution so is e2x (because
of the Superposition Principle) , and the latter expression for y2(x) is a tad bit simpler.

The general solution is a linear combination of y1(x) and y2(x) :

y(x) = c1e
3x + c2e

2x.

4. Given that y1(x) = e2x is one solution of y′′ − 4y = 0, find a second linearly independent solution and
then write down the general solution.
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• We’ll again apply the Reduction of Order formula to get a second linearly independent solution.
For this problem we have y1(x) = e2x and p(x) = 0. So

y2(x) = e2x
∫ x 1

(e2s)
2 exp

[
−
∫ s

0 · dt
]
ds

= e2x
∫ x

e−4se0ds

= e2x
∫ x

e−4sds

= e2x
(
−1

4
e−4x

)
= −1

4
e−2x

∼ e−2x

Again we have thrown away a constant factor to simplify the expression of y2(x). The general
solution is thus

y(x) = c1e
2x + c2e

−2x.

5. Given that y1(x) = x is one solution of y′′ − 2xy′ + 2y = 0, find a second linearly independent solution
and then write down the general solution.

• We’ll again apply the Reduction of Order formula to get a second linearly independent solution.
For this problem we have y1(x) = x and p(x) = −2x. So

y2(x) = x

∫ x 1

s2
exp

[∫ s

2tdt

]
ds

= x

∫ x 1

s2
exp

[
s2
]
ds

= x

∫ x es
2

s2
ds

Unfortunately, we can not actually carry out the final integration to get a simple formula of y2(x).
Nevertheless, the integral can at least always be evaluated numerically, and we can write the fol-
lowing formula for the general solution of the original differential equation

y(x) = c1y1(x) + c2y2(x) = c1x+ c2x

∫ x es
2

s2
ds .

6. Given that y1(x) = x sin(x) is one solution of x2y′′ − 2xy′ + (x2 + 2)y = 0, find a second linearly
independent solution and then write down the general solution.

• We’ll again apply the Reduction of Order formula to get a second linearly independent solution.
This time we have y1(x) = x sin(x) and p(x) = − 2

x (to identify p(x) we first put the differential
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equation in standard form). So

y2(x) = x sin(x)

∫ x 1

(s sin(s))
2 exp

[
−
∫ s

−2

t
dt

]
ds

= x sin(x)

∫ x 1

(s sin(s))
2 exp [2 ln |s}] ds

= x sin(x)

∫ x 1

(s sin(s))
2 s

2ds

= x sin(x)

∫ x 1

sin2(s)
ds

= x sin(x)

∫ x

csc2(s)ds

= x sin(x) (− cot(x))

= x sin(s)

(
−cos(x)

sin(x)

)
= −x cos(x)

∼ x cos(x)

where in the last step we dropped the factor of -1 to simplify the expression for y2(x).
The general solution is thus

y(x) = c1x sin(x) + c2x cos(x) .

7. Find the general solution of the following differential equations

(a) y′′ − 5y = 0.

• This is a second order linear equation with constant coefficients and so we look for solutions of the
form y(x) = eλx. Plugging y(x) = eλx into the differential equation yields

λ2eλx − 5eλx = 0

or (
λ2 − 5

)
eλx = 0

Thus the characteristic equation for this differential equation is

λ2 − 5 = 0

or

λ2 = 5

which obviously has as solutions

λ = ±
√

5

So both y1(x) = e
√
5x and y2(x) = e−

√
5x are solutions of the differential equation. Moreover,

they are linearly independent since

W [y1, y2] (x) = e
√
5x
(
−
√

5e−
√
5x
)
−
(√

5e
√
5x
)
e−
√
5x = −2

√
5 6= 0.

Therefore the general solution of the differential equation is

y(x) = c1e
√
5x + c2e

−
√
5x .

(b) y′′ − 3y + 2y = 0

• The characteristic equation for this second order linear equation with constant coefficients is

λ2 − 3λ+ 2 = 0
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or

(λ− 1)(λ− 2) = 0

Thus, we have λ = 1, 2 as solutions. To each of these roots of the characterisitic equation we have
a corresponding solution of the original differential equation; namely, y1(x) = ex and y2(x) = e2x.
These two solutions are linearly independent and so the general solution is

y(x) = c1e
x + c2e

2x .

(c) y′′ − y′ − 20y = 0

• The characteristic equation for this homogeneous second order linear equation with constant coef-
ficients is

λ2 − λ− 20 = 0

or

(λ− 5) (λ+ 4) = 0.

Thus, λ = 5,−4 and we have two linearly independent solutions y1(x) = e5x and y2(x) = e−4x. The
general solution is thus

y(x) = c1e
5x + c2e

−4x .

(d) y′′ − 13y′ + 42y = 0

• The characteristic equation for this homogeneous second order linear equation with constant coef-
ficients is

λ2 − 13λ+ 42 = 0

To solve the characteristic equation we apply the Quadratic Formula:

λ =
−(−13)±

√
(−13)2 − 4 (42)

2

=
13±

√
169− 168

2

=
13± 1

2
= 7, 6

Thus, λ = 6, 7 and we have two linearly independent solutions y1(x) = e6x and y2(x) = e7x. The
general solution is thus

y(x) = c1e
6x + c2e

7x

(e) y′′ + y′ + 7y = 0

• The characteristic equation for this homogeneous second order linear equation with constant coef-
ficients is

λ2 + λ+ 7 = 0

To solve the characteristic equation we apply the Quadratic Formula:

λ =
−1±

√
(1)2 − (4)(7)

2

=
−1±

√
1− 28

2

=
−1±

√
−27

2

=
−1±

√
27i

2
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Thus, we have a pair of complex roots

λ = −1

2
+

√
27

2
i , −1

2
−
√

27

2
i

and so we take

α = Re(λ) = −1

2

β = ±Im(λ) =

√
27

2

Associated to the complex roots λ = α ± iβ are the following real-valued solutions of the original
differential equation:

y1(x) = eαx cos(βx) = e−
1
2x cos

(√
27

2
x

)

y2(x) = eαx sin(βx) = e−
1
2x sin

(√
27

2
x

)
and so the general solution is

y(x) = c1e
− 1

2x cos

(√
27

2
x

)
+ c2e

− 1
2x sin

(√
27

2
x

)
.

(f) y′′ + 2y′ + 5y = 0

• The characteristic equation for this homogeneous second order linear equation with constant coef-
ficients is

λ2 + 2λ+ 5 = 0

To solve the characteristic equation we apply the Quadratic Formula:

λ =
−2±

√
(2)2 − (4)(5)

2

=
−2±

√
4− 20

2

=
−2±

√
−16

2

=
−2± 4i

2
= −1± 2i

Thus, we have a pair of complex roots

λ = −1 + 2i , −1− 2i

so we take α = −1 = Re (λ) and β = 2 = ±Im(λ) . Associated to this pair of complex roots are
the following real-valued solutions of the original differential equation:

y1(x) = eαx cos(βx) = e−x cos (2x)

y2(x) = eαx sin(βx) = e−x sin (2x)

and so the general solution is

y(x) = c1e
−x cos (2x) + c2e

−x sin (2x) .

8. Solve the following initial value problems.

(a) y′′ − 9y = 0, y(0) = 1, y′(0) = 2.
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• The characteristic equation for this homogeneous second order linear equation with constant coef-
ficients is

λ2 − 9 = 0

or

(λ− 3)(λ+ 3) = 0

so λ = 3,−3. The general solution is thus

y(x) = c1e
3x + c2e

−3x .

We now impose the initial conditions to fix the constants c1 and c2.

1 = y(0) = c1e
0 + c2e

0 = c1 + c2

2 = y′(0) = 3c1e
3x − 3c2e

−3x∣∣
x=0

= 3c1 − 3c2

Thus we have two equations and two unknowns

c1 + c2 = 1

3c1 − 3c2 = 2

Adding 3 times the first equation to the second equation yields

6c1 + 0 = 5

so c1 = 5
6 . But then the equation c1 + c2 = 1 implies that c2 = 1

6 . Thus, the solution to the initial
value problem is

y(x) =
5

6
e3x +

1

6
e−3x .

(b) y′′ − 2y′ + y = 0, y(0) = 2, y′(0) = 1.

• he characteristic equation for this homogeneous second order linear equation with constant coeffi-
cients is

λ2 − 2λ+ 1 = 0

or

(λ− 1)2 = 0

so λ = 1. So y1(x) = ex is one solution of the differential equation, and (because we are in the
case where there is only one distinct root for the characteristic equation) y2(x) = xy1(x) = xex is
a second linearly independent solution. The general solution is thus

y(x) = c1e
x + c2xe

x .

We now impose the initial conditions to fix c1 and c2:

2 = y(0) = c1e
0 + c2(0)e0 = c1

1 = y′(0) = c1e
x + c2(ex + xex)|x=0 = c1 + c2

Thus, we must have

c1 = 2

c1 + c2 = 1

Obviously, we must have c1 = 2 and c2 = −1. Thus, the solution to the initial value problem is

y(x) = 2ex − xex .

(c) y′′ + 2y′ + 2y = 0, y(0) = 1, y′(0) = −1
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• The characteristic equation for this homogeneous second order linear equation with constant coef-
ficients is

λ2 + 2λ+ 2 = 0

The Quadratic Formula thus implies

λ =
−2±

√
(2)2 − (4)(2)

2

=
−2±

√
−4

2

=
−2± 2i

2
= −1± i

We thus have a pair of complex roots λ = α ± iβ with α = −1 and β = 1. The general solution is
thus

y(x) = c1e
αx cos(βx) + c2e

αx sin(βx) = c1e
x cos(x) + c2e

x sin(x) .

We now impose the initial conditions to fix c1 and c2:

1 = y(0) = c1e
0 cos(0) + c2e

0 sin(0) = c1(1)(1) + c2(1)(0) = c1

−1 = y′(0) = c1 (ex cos(x)− ex sin(x)) + c2 (ex sin(x) + ex cos(x))|x=0 = c1(1− 0) + c2(0 + 1) = c1 + c2

We thus have

c1 = 1

c1 + c2 = −1

which implies c1 = 1 and c2 = −2. Thus, the solution to the initial value problem is

y(x) = ex cos(x)− 2ex sin(x) .


