
Math 2233
Homework Set 3

1. Solve the following initial value problem.

y′ − y = 2xe2x ; y(1) = 0 .

• This is a first order linear ODE with p (x) = −1 and g(x) = 2xe2x. So

µ(x) = exp

[∫ x

p(s)ds

]
= exp

[∫ x

−ds
]

= exp [−x] = e−x

hence, the general solution of the ODE is

y(x) =
1

µ(x)

∫ x

µ(s)g(s)ds+
C

µ(x)

=
1

e−x

∫ x

e−s
(
2se2s

)
ds+

C

e−x

= ex
∫ x

2sesds+ Cex

= ex (2xex − 2ex) + Cex

= 2xe2x − 2e2x + Cex

We now impose the initial condition y(1) = 0 :

0 = y(1) = 2(1)e2 − 2e2 + Ce1

= Ce

Thus, C = 0 and so the solution to the initial value problem is

y(x) = 2xe2x − 2e2x.

2. Solve the following initial value problem.

y′ +
2

x
y =

cos(x)

x2
; y(π) = 0

• This is a first order linear ODE with p(x) = 2
x and g(x) = cos(x)

x2 . Hence

µ(x) = exp

[∫ x

p(s)ds

]
= exp

[∫ x 2

s
ds

]
= exp [2 ln |x|] = exp

[
ln |x2|

]
= x2

and so the general solution of the ODE is

y(x) =
1

µ(x)

∫ x

µ(s)g(s)ds+
C

µ(x)

=
1

x2

∫ x

s2
(

cos(s)

s2

)
ds+

C

x2

=
1

x2

∫ x

cos(s)ds+
C

x2

=
1

x2
sin(x) +

C

x2

We now impose the initial condition to fix C.

0 = y(π) =
1

π2
sin(π) +

C

π2
= 0 +

C

π2
=

C

π2

So we must take C = 0. The solution to the initial value problem is thus

y(x) =
sin(x)

x2
.
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3. Find the solution of the initial value problem below. State the interval in which the solution is valid.

xy′ + 2y = x2 − x+ 1 ; y(1) =
1

2
.

• Dividing both sides by x we put the differential equation in standard form:

y′ +
2

x
y = x− 1 +

1

x

so p(x) = 2
x and g(x) = x− 1 + 1

x . Note that since p(x) and g(x) are both undefined at x = 0, we
might expect trouble for any solution we construct at the point x = 0. At any rate

µ(x) = exp

[∫ x

p(s)ds

]
= exp

[∫ x 2

s
ds

]
= exp [2 ln |x|] = x2

and so the general solution is

y(x) =
1

µ(x)

∫ x

µ(s)g(s)ds+
C

µ(x)

=
1

x2

∫ x

s2
(
s− 1 +

1

s

)
ds+

C

x2

=
1

x2

∫ (
s3 − s2 + s

)
ds+

C

x2

=
1

x2

(
1

4
x4 − 1

3
x3 +

1

2
x2
)

+
C

x2

=
1

4
x2 − 1

3
x+

1

2
+
C

x2

Note that if C 6= 0 then a solution is undefined at x = 0. Now we plug into the initial condition

1

2
= y(1) =

1

4
(1)2 − 1

3
(1) +

1

2
+

C

(1)2
=

1

4
− 1

3
+

1

2
+ C =

5

12
+ C

so C = 1
12 .Thus the solution to the initial value problem is

y(x) =
1

4
x2 − 1

3
x+

1

2
+

1

12
x−2

which is which is well-defined on any interval that excludes the point x = 0.

4. Find the solution of the initial value problem below. State the interval in which the solution is valid.

y′ + y =
1

1 + x2
, y(0) = 0 .

• The differential equation is in standard form and the coefficient functions p(x) = 1 and g(x) = 1
1+x2

are well-defined for all x so we can expect solutions to be well defined on any subinterval of the real
line. Calculating µ(x) we get

µ(x) = exp

[∫ x

p(s)ds

]
= exp

[∫ x

ds

]
= ex

and so the general solution will be

y(x) =
1

µ(x)

∫ x

µ(s)g(s)ds+
C

µ(x)

=
1

ex

∫ x es

1 + s2
ds+

C

ex

= e−x
∫ x es

1 + s2
ds+

C

ex
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Unfortunately, there is no way to evaluate the integral∫
ex

1 + x2
dx

in closed form. To make further progress, we need to use the following formula for the solution of
an initial value problem of the form y′ + p(x)y = g(x), y(xo) = yo.

(1) y(x) =
1

µo(x)

∫ x

xo

µo(s)g(s)ds+
yo

µo(x)

where

(2) µo(x) = exp

[∫ x

xo

p(s)ds

]
Note the use of definite integrals in these formulas. In accordance with the initial condition y(0) = 0,
we set xo = 0 and yo = 0; and

plug into the formulas (??) and (??):

µo(x) = exp

[∫ x

0

p(s)ds

]
= exp

[∫ x

0

ds

]
= exp [x− 0] = ex

y(x) =
1

µo(x)

∫ x

xo

µo(s)g(s)ds+
yo

µo(x)

=
1

ex

∫ x

0

es

1 + s2
ds+

0

ex

=
1

ex

∫ x es

1 + s2
ds

5. Verify that each of the following differential equations is exact and then find the general solution.

(a) 2xy dx+
(
x2 + 1

)
dy = 0

•

M = 2xy

N = x2 + 1
∂M

∂y
= 2x =

∂N

∂x
⇒ Exact

Since the differential equation is exact it is equivalent to an algebraic relation of the form

φ(x, y) = C

with

∂φ

∂x
= M = 2xy(3)

∂φ

∂y
= N = x2 + 1(4)

The most general function φ satisfying (??) is obtained taking the anti-partial dervivative with
respect to x; i.e., by integrating with respect to x, treating y as a constant, and allowing the
possibility of an arbitrary function of y in the result:

φ(x, y) =

∫
∂φ

∂x
∂x =

∫
(2xy)∂x = yx2 +H1(y)

Similarly, the most general function φ satisfying (??) is

φ(x, y) =

∫
∂φ

∂y
∂y =

∫
(x2 + 1)∂y = x2y + y +H2(x)
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Comparing these two expressions for φ(x, y) and demanding that they agree with one another, we
see that we must take

H1(y) = y

H2(x) = 0

Hence, φ(x, y) = x2y + y and our differential equation is equivalent to the following family of
algebraic relations

x2y + y = C , with C an arbitrary constant .

Solving this relation for y yields

y(x) =
C

x2 + 1
.

(b) 3x2y dx+
(
x3 + 1

)
dy = 0

•

M = 3x2y ⇒ ∂M

∂y
= 3x2

N = x3 + 1 ⇒ ∂N

∂x
= 3x2

Since ∂M
∂y = ∂N

∂x the equation is exact.

φ(x, y) =

∫
∂φ

∂x
∂x =

∫
M(x, y)∂x =

∫
3x2y∂x = x3y +H1(y)

φ(x, y) =

∫
∂φ

∂y
∂y =

∫
N(x, y)∂y =

∫ (
x3 + 1

)
∂y = x3y + y +H2(x)

Comparing these two expressions for φ(x, y) we see that we must take H1(y) = y and H2(x) = 0.
So φ(x, y) = x3y + y and the differential equation is equivalent to

x3y + y = C

or

y(x) =
C

1 + x3

(c) y(y + 2x)dx+ x(2y + x)dy = 0

•

M = y2 + 2yx ⇒ ∂M

∂y
= 2y + 2x

N = 2yx+ x2 ⇒ ∂N

∂x
= 2y + 2x

Since ∂M
∂y = ∂N

∂x the equation is exact.

φ(x, y) =

∫
∂φ

∂x
∂x =

∫
M(x, y)∂x =

∫
(y2 + 2yx)∂x = y2x+ yx2 +H1(y)

φ(x, y) =

∫
∂φ

∂y
∂y =

∫
N(x, y)∂y =

∫ (
2yx+ x2

)
∂y = y2x+ x2y +H2(x)

Comparing these two expressions for φ(x, y) we see that we must take H1(y) = 0 and H2(x) = 0.
So φ(x, y) = x2y + y2x and the differential equation is equivalent to

x2y + y2x = C

Solving this equation for y yields

y =
1

2x

(
−x2 ±

√
(x4 + 4xC)

)
.
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(d) y cos(xy) dx+ x cos(xy) dy = 0

•

M = y cos(xy) ⇒ ∂M

∂y
= cos(xy)− xy sin(xy)

N = x cos(xy) ⇒ ∂N

∂x
= cos(xy)− xy sin(xy)

Since ∂M
∂y = ∂N

∂x the equation is exact.

φ(x, y) =

∫
∂φ

∂x
∂x =

∫
M(x, y)∂x =

∫
y cos(xy)∂x = sin(xy) +H1(y)

φ(x, y) =

∫
∂φ

∂y
∂y =

∫
N(x, y)∂y =

∫
x cos(xy)∂y = sin(xy) +H2(x)

Comparing these two expressions for φ(x, y) we see that we must take H1(y) = 0, H2(x) = 0, and
φ(x, y) = sin(xy). Thus the original differential equation is equivalent to

sin(xy) = C

or

y =
C ′

x

(Here C ′ = sin−1(C).)

6. Solve the following initial value problems.

(a) (x− y cos(x))− sin(x)y′ = 0 , y
(π

2

)
= 1

• This equation is exact since

∂

∂y
(x− y cos(x)) = − cos(x) =

∂

∂x
(sin(x))

Therefore, it must be equivalent to an algebraic equation of the form φ(x, y) = C with

φ(x, y) =

∫
∂φ

∂x
∂x =

∫
M(x, y)∂x =

∫
(x− y cos(x)) ∂x =

1

2
x2 − y sin(x) +H1(y)

φ(x, y) =

∫
∂φ

∂y
∂y =

∫
N(x, y)∂y =

∫
(− sin(x)) ∂y = −y sin(x) +H2(x)

Comparing these two expressions for φ(x, y) we see we must take H1(y) = 0, H2(x) = 1
2x

2, and

φ(x, y) = 1
2x

2 − y sin(x). Hence we must have

1

2
x2 − y sin(x) = C.

Before solving for y we’ll impose the initial condition: x = π
2 ⇒ y = 1 to first determine C.

C =
1

2
x2 − y sin(x) =

1

2

(π
2

)2
− (1) sin(

π

2
) =

1

8
π2 − 1.

Now we solve for y :

y =
1
2x

2 − C
sin(x)

= csc(x)

(
1

2
x2 + 1− 1

8
π2

)

(b) x2 + y2 + 2xyy′ = 0 , y(1) = 1
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• This equation is exact since

∂

∂y

(
x2 + y2

)
= 2y =

∂

∂x
(2xy) .

Therefore, the differential equation is equivalent to an algebraic relation of the form φ(x, y) = C
with

φ(x, y) =

∫
∂φ

∂x
∂x =

∫
M(x, y)∂x =

∫ (
x2 + y2

)
∂x =

1

3
x3 − xy2 +H1(y)

φ(x, y) =

∫
∂φ

∂y
∂y =

∫
N(x, y)∂y =

∫
(2xy) ∂y = xy2 +H2(x)

Comparing these two expressions for φ(x, y) we see we must take H1(y) = 0, H2(x) = 1
3x

3, and so

φ(x, y) = 1
3x

3 − xy2. We thus have

1

3
x3 + xy2 = C.

We now impose the initial condition x = 1 ⇒ y = 1 to fix C:

C =
1

3
x3 + xy2 =

1

3
(1)3 + (1)(1)2 =

4

3
.

Hence, the differential equation together with the initial condition implies that y must satisfy

1

3
x3 + xy2 =

4

3
.

Solving this equation for y yields

y = ±
√

1

3x
(4− x3)


