
Math 2233
Solutions to Homework Set 1

1. Determine the order of the following differential equations, whether or not the equations are linear and
whether the differential equations are ODEs (ordinary differential equations) or PDEs (partial differential
equations).

(a) x2
d2y

dx2
+ x

dy

dx
+ 2y = sin(x)

• This is a second order, linear, ODE.

(b) (1 + y2)
d2y

dx2
+ x

dy

dx
+ y = ex

• This is a second order, non-linear, ODE (the y2 d
2y
dx2 term makes it non-linear)

(c)
∂2φ

∂x2
+ y2

∂φ

∂x
= x2

• This is a second order, linear, PDE.

(d)
d4y

dx4
+
d3y

dx3
+
d2y

dx2
+
dy

dx
+ y = 1

• This is a fourth order, linear, ODE.

(e)
dy

dx
+ xy2 = 0

• This is a first order, non-linear, ODE (the xy2 term in non-linear in the unknown function y).

(f)
∂2φ

∂x∂y
+
∂φ

∂x
φ = x2

• This is a second order, non-linear, PDE (the term ∂φ
∂xφ is not simultaneously linear in φ and

∂φ
∂x )

(g)
d2y

dx2
+ sin(x+ y) = sin(x)

• This is a second order, non-linear, ODE (the function sin (x+ y) is a non-linear function of y).

2.

(a) Plot the direction field for the differential equation

y′ = x2 + y.

• We begin by chosing a representative grid of points in the xy-plane. Here I’ll consider the points
(x, y) where 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4 and I’ll use step-sizes of ∆x = 0.5 and ∆y = 0.5. Thus,
x ∈ {0.0, 0.5, 1.0.1.5, . . . , 3.5, 4.0} and y ∈ {0.0, 0.5, 1.0, . . . , 3.5, 4.0}.
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Next, I’ll build a table with colums x, y, and x2 + y. The last column represents the slope (as
prescribed by the differential equation) of a solution that passes thru the corresponding point (x, y).

x y x2 + y
0.0 0.0 0.0
0.0 0.5 0.5
0.0 1.0 1.0
0.0 1.5 1.5
0.0 2.0 2.0
0.0 2.5 2.5
0.0 3.0 3.0
0.0 3.5 3.5
0.0 4.0 5.0

x y x2 + y
0.5 0.0 .25
0.5 0.5 .75
0.5 1.0 1.25
0.5 1.5 1.75
0.5 2.0 2.25
0.5 2.5 2.75
0.5 3.0 3.25
0.5 3.5 3.75
0.5 4.0 4.24

→ · · · →

x y x2 + y
4.0 0.0 16.0
4.0 0.5 16.5
4.0 1.0 17.0
4.0 1.5 17.5
4.0 2.0 18.0
4.0 2.5 18.5
4.0 3.0 19.0
4.0 3.5 19.5
4.0 4.0 20.0

The next step is to plot little arrows in the xy-plane from the data in this table. For each value of
x and each value of y in your table, you plot a little arrow with slope equal to x3 + y. Thus, for
example, at the point with coordinates (0, 5, 2.0) on your graph paper, you’d make a short arrow
with slope 2.25. Below is a (computer generated) plot (done in essentially the same way, but with
even more data points.

(b) Sketch the solution that satisfies y(0) = 2.

• To sketch a solution, you place our pencil on the direction field plot (produced above) at the point
where the initial condition is defined and then try to sketch a curve that starts at that spot and
follows the arrows of the plot. In our case, the initial condition says when x = 0, y = 2. so the
initial point on the solution curve will be (0, 2). Below I have indicated the corresponding solution
on the plot as the green curve.

(c) Sketch the solution that satisfies y(0) = 1.

• This solution corresponds to the blue curve shown below. Note that it starts at the point (0, 1)
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3. Consider the differential equation y′ = (y+ 2)∗ (y−2). What can you say about the behavior of solution
y(x) that passes through the point x = 0 , y = −1 as x→∞ ? (Hint: the sign of the right hand side of the
differential equations tells you whether or not a solution y(x) is increasing or decreasing.)

• By virtue of the differential equation

y′ = (y + 2) (y − 2)

we see that the value of y determines whether a solution y(x) is increasing, decreasing, or constant
(that is to say, when y′(x) is positive, negative, or zero).< 0 are decreasing.
(1) If y > 2, then y′ < 0. This is because if y > 2 both factors on the right hand side of the

differential equation are positive:

y > 2 ⇒ y + 2 > 0 and y − 2 > 0

So in this region, their product (y + 2) (y − 2) will be positive and so solutions in the region
have positive derivatives are therefore always decreasing.

(2) if y = 2, then y′ = 0, and so solutions for which y = 2 are constant and so stick to the line
y = 2.

(3) if −2 < y < 2, then y′ < 0. This because in this region y + 2 > 0 but y − 2 < 0. Hence
the derivative of a solution in this region must be negative. Thus, the solutions in the region
−2 < y < 2 are decreasing.

(4) if y = −2, then y′ = 0, and so solutions for which y = −2 are constant, and so stick to the line
y = −2.

(5) if y < −2, then y′ > 0, since both factors are positive. The solutions in this region will be
increasing with x.

We thus have four basic classes of solutions.
• The solutions in the region y > 2 are always increasing. They will tend to ∞ as x→∞.
• The solutions that begin at y = 2 will stay on the line y = 2.
• The solutions in the region −2 < y < 2 are always decreasing. However, they cannot decrease past
the line y = −2 as they approach that line their derivatives must tend to zero. This means the
solutions curves flatten out as they approach y = −2. In this region, the solutions approach the
line y = −2 asymptotically as x→∞.

• The solutions that begiat at y = −2 will stay on the line y = −2.
• The solutions in the region y < −2 are always increasing. However, as they approach the line
y = −2, they must level out since the derivatives when y = −2 are zero. These solutions must tend
to the value −2 as x→∞.
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4. Using the Euler Method, find an approximate value for y(1) for the following initial value problem (take
h = ∆x = 0.2):

dy

dx
= x+ y , y(0) = 1

• We’ll do this problem by hand. In accordance with the initial condition y(0) = 1 we set x0 = 0 and
y0 = 1. To get the next pair of points on the solution curve we use the fact that the slope of the
best straight line fit to the solution curve at (x0, y0) = (0, 1) must be

m0 =
dy

dx

∣∣∣∣
(x0,y0)

= x0 + y0 = 0 + 1 = 1.

Setting
x1 = x0 + ∆x = 0 + .2 = 0.2

we get an approximate value for y1 = y(x1) using the formula ∆y = m∆x; (for the case at hand,
this formula implies y1 = y0 +m0∆x)

y1 = y0 +m0∆x

= 1 + (1)(0.2)

= 1.2

Thus the next pair of points on the solution curve should be (x1, y1) = (0.2, 1.2). Now we calculate
the slope of the best strainght line fit the to solution that passes through the point (x1, y1):

m1 =
dy

dx

∣∣∣∣
(x1,y1)

= x1 + y1 = 0.2 + 1.2 = 1.4

Taking x2 = x1 + ∆x = 0.4, we calculate y2

y2 = y1 +m1∆x

= 1.2 + (1.4)(0.2)

= 1.48

We continue in this manner:

m2 = x2 + y2 = 0.4 + 1.48 = 1.88

x3 = x2 + ∆x = 0.4 + 0.2 = 0.6

y3 = y2 +m2∆x = 1.48 + (1.88)(0.2) = 1.856

m3 = x3 + y3 = 0.6 + 1.856 = 2.456

x4 = x3 + ∆x = 0.6 + 0.2 = 0.8

y4 = y3 +m3∆x = 1.856 + (2.456)(0.2) = 2.3472

m4 = x4 + y4 = 0.8 + 2.3472 = 3.1472

x5 = x4 + ∆x = 0.8 + 0.2

y5 = y4 +m4∆x = 2.3472 + (3.1472)(0.2) = 2.9766

Thus y(1) = y(x5) = y5 = 2.9766.

5. Using the Euler Method, find an approximate value for y(1.5) for the following initial value problem
(take h = ∆x = 0.1):

dy

dx
= xey , y(1) = 0

• This problem is solved liked its predecessor. The initial values of x and y are given by

x0 = 1.0

y0 = 0.0
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We determine successive values of x and y via

xi+1 = xi + 0.1

yi+1 = yi + (xie
yi) (0.1)

On then finds

x1 = 1.1

y1 = 0.1

↓
x2 = 1.2

y2 = 0.221569

↓
x3 = 1.4

y3 = 0.371333

↓
x4 = 1.4

y4 = 0.550789

↓
x5 = 1.5

y5 = 0.804832

Thus, the approximate value for y (1.5) will be 0.804832.


