
Math 2233
SOLUTIONS TO SECOND EXAM

July 19, 2017

1. Given that y1(x) = ex and y2(x) = xex are solutions to y′′ − 2y′ + y = 0

(a) (5 pts) Show that the functions y1(x) and y2(x) are linearly independent.

•
W [y1, y2] ≡ y1y′2 − y′1y2 = (ex) (ex + xex)− (ex) (xex) = e2x 6= 0 ⇒ y1, y2 are independent

Alternatively, y1 (x) 6= λy2 (x) ⇒ W [y1, y2] 6= 0 ⇒ y1, y2 are independent

(b) (5 pts) Write down the general solution.

•
y (x) = c1e

x + c2xe
x

(c) (5 pts) Find the solution satisfying the initial conditions y(1) = 1, y′(1) = 2.

• Applying the initial conditions to the general solution yields

1 = y (1) = c1e
1 + c2 (1) e1 = ec1 + ec2

2 = y′ (1) = (c1e
x + c2e

x + c2xe
x)|x=1 = ec1 + 2ec2

Subtracting the second equation from the first yields −1 = −ec2 ⇒ c2 = e−1. Inserting this
value for c2 in the first equation yields 1 = ec1 + 1 ⇒ c1 = 0. Thus, c1 = 0 and c2 = 1/e;
hence

y (x) =
1

e
xex

2. (10 pts) Given that y1(x) = x3 is one solution of x2y′′ − 5xy′ + 9y = 0, use Reduction of Order to
determine the general solution.

• We use Reduction of Order to calculate a second independent solution. Before plugging into the
Reduction of Order formula, we note that the differential equation in standard form is y′′ − 5

xy
′ +

9
x2 y = 0; and so p (x) = −5/x.

y2 = y1

∫
1

(y1)
2 exp

(
−
∫
pdx

)
dx = x3

∫
1

x6
exp

(
+

∫
5

x
dx

)
= x3

∫
1

x6
exp (5 ln |x|)

= x3
∫
x5

x6
dx = x3 ln |x|

y1 (x) = x3 and y2 (x) = x3 ln |x| are two independent solutions of the homogeneous linear differ-
ential equation; hence its general solution is

y (x) = c1x
3 + c2x

3 ln |x|

3. (15 pts) Explain in words and formulas how you would construct the general solution of y′′ + p (x) y′ +
q (x) y = g(x), given that y1(x) is a solution of y′′ + p (x) y′ + q (x) y = 0. (That is, describe the general
procedure, writing down the relevant formulas. It is not necessary to carry out any calculations.)

• Step 1: Use the Reduction of Order formula y2 (x) = y1 (x)
∫

1
(y1(x))

2 exp
(
−
∫
p (x) dx

)
dx to

calculate a second independent solution, y2 (x), of the homogeneous differential equation y′′ +
p (x) y′ + q (x) y = 0.

• Step 2: Plug y1 (x) and y2 (x) into the Variation of Parameters formula Yp (x) = −y1 (x)
∫ y2(x)g(x)
W [y1,y2](x)

dx+

y2 (x)
∫ y1(x)g(x)
W [y1,y2](x)

dx to calculate a particular solution of the inhomogeneous differential equation

y′′ + p (x) y′ + q (x) y = g (x).
• Write down the general solution of the inhomogeneous differential equation as

Y (x) = Yp (x) + c1y1 (x) + c2y2 (x) (c1, c2 being arbitrary constants)
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4. Determine the general solution of the following differential equations.

(a) (5 pts) y′′ − 5y′ + 6y = 0

• A constant coefficients differential equation. Substituting y (x) = eλx into the differential equation
yields the following characteristic equation for λ

0 = λ2 − 5λ+ 6 = (λ− 2) (λ− 3) ⇒ λ = 2, 3

Thus, e2x and e3x will be two independent solutions and the general solution will be

y (x) = c1e
2x + c2e

3x

(b) (5 pts) y′′ − 6y′ + 9y = 0

• A constant coefficients differential equation. Substituting y (x) = eλx into the differential equation
yields the following characteristic equation for λ

0 = λ2 − 6λ+ 9 = (λ− 3)
2

= 0 ⇒ λ = 3 (only one root)

In this situation we have only one exponential solution y1 (x) = e3x. A second solution solution
can be found by Reduction of Order, but in the contant coefficient case with a single root, that
second solution always turns out to be y2 (x) = xy1 (x) = xe3x. The general solution is thus

y (x) = c1e
3x + c2xe

3x

(c) (5 pts) y′′ − 6y′ + 13y = 0

• A constant coefficients differential equation. Substituting y (x) = eλx into the differential equation
yields the following characteristic equation for λ

0 = λ2 − 6λ+ 13 ⇒ λ =
6±
√

36− 52

2
=

6±
√
−16

2
= 3± 2i

In this situation, the general solution can be written by plugging the real (α) and imaginary (β)
parts of the complex roots λ = α± iβ into the following template for the geneal solution

y (x) = c1e
αx cos (βx) + c2e

αx sin (βx) = c1e
3x cos (2x) + c2e

3x sin (2x)

(d) (5 pts) x2y′′ + 3xy′ − 8y = 0

• An Euler type ODE. Substituting y (x) = xm into the differential equation yields the following
indicial equation for m:

0 = m (m− 1) + 3m− 8 = m2 + 2m− 8 = (m+ 4) (m− 2) ⇒ m = −4, 2

We thus have two real roots m = −4, 2, two independent solutions y1 (x) = x−4 and y2 = x2 and
the following general solution

y (x) = c1x
−4 + c2x

2

(e) (5 pts) x2y′′ − 3xy′ + 4y = 0

• An Euler type ODE. Substituting y (x) = xm into the differential equation yields the following
indicial equation for m:

0 = m (m− 1)− 3m+ 4 = m2 − 4m+ 4 = (m− 2)
2 ⇒ m = 2 (one real root)

In this situation, we have one solution y1 (x) = x2. A second independent solution can be found
via Reduction of Order; but in the current situation (an Euler type equation with a single root),
the Reduction of Order calculation just yields a second solution of the form y2 (x) = y1 (x) ln |x| =
x2 ln |x|. Thus, the general solution will be

y (x) = c1x
2 + c2x

2 ln |x|

(f) (5 pts) x2y′′ + 3xy′ + 10y = 0

• An Euler type ODE. Substituting y (x) = xm into the differential equation yields the following
indicial equation for m:

0 = m (m− 1) + 3m+ 10 = m2 + 2m+ 10 ⇒ m =
−2±

√
4− 40

2
=
−2±

√
−36

2
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or m = 1± 3i. Since we have a pair of complex roots, we can write down the general solution by
substituting α = 1 = Re (m) and β = 3 = Im (m) into the following template:

y (x) = c1x
α cos (β ln |x|) + c2x

α sin (β ln |x|) = c1x
−1 cos (3 ln |x|) + c2x

−1 sin (2 ln |x|)
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5. Given that y1(x) = e2x and y2(x) = e3x are solutions of y′′ − 5y′ + 6y = 0,

(a) (10 pts) Use the Method of Variation of Parameters to find a particular solution of y′′ − 5y′ + 6y = ex

• The differential equation is in standard form with g (x) = ex. The Wronskian of y1 and y2 is

W [y1, y2] =
(
e2x
) (

3e3x
)
−
(
2e2x

) (
e3x
)

= 3e5x − 235x = e5x

We can now plug into the Variation of Parameters formula:

Yp (x) = −y1 (x)

∫
y2 (x) g (x)

W [y1, y2] (x)
dx+ y2 (x)

∫
y1 (x) g (x)

W [y1, y2] (x)
dx

= −e2x
∫
e3xex

e5x
dx+ e3x

∫
e2xex

e5x
dx = −e2x

∫
e−xdx+ e3x

∫
e−2xdx

= −e2x
(
−e−x

)
+ e3x

(
−1

2
e−2x

)
= ex − 1

2
ex =

1

2
ex

(b) (5 pts) Find the solution of y′′ − 5y′ + 6y = ex satisfying y(0) = 0, y′ (0) = 1.

• With the particular solution Yp (x) = 1
2e
x in hand, along with the two independent solutions

y1 (x) = e2x, y2 (x) = e3x of the corresponding homogeneous problem, we can immediately write
down the general solution of the inhomogeneous differential equation

Y (x) = Yp (x) + c1y1 (x) + c2y2 (x) =
1

2
ex + c2e

2x + c2e
3x

We next impose the initial conditions on the general solution:

0 = y (0) =
1

2
e0 + c1e

0 + c2e
0 =

1

2
+ c1 + c2 ⇒ c1 + c2 = −1

2

1 = y′ (0) =

[
1

2
ex + 2c1e

2x + 3c2e
3x

]∣∣∣∣
x=0

=
1

2
+ 2c1 + 3c2 ⇒ 2c1 + 3c2 =

1

2

Solving this pair of equations for c1, c2 yields c1 = −2 and c2 = 3
2 . Thus, the solution is

y (x) =
1

2
ex − 2e2x +

3

2
e3x

6. (15 pts) Given that y (x) = c1x
2 + c2x

3 is the geneal solution of x2y′′ − 4xy′ + 6y = 0; find the general
solution of x2y′′ − 4xy + 6y = x3.

• We’ll first employ Variation of Parameters to find a particular solution yp (x) of the inhomogeneous
differential equation, which once put in standard form is

y′′ − 4

x
y′ +

6

x2
y = x ⇒ g (x) = x

We can read off two independent solutions y1 (x) = x2 and y2 (x) = x3 from the form of the general
solution of the corresponding homogeneous ODE. Their Wronskian is

W [y1, y2] =
(
x2
) (

3x2
)
− (2x)

(
x3
)

= x4

We now plug into the Variation of Parameters formula

yp (x) = −y1 (x)

∫
y2 (x) g (x)

W [y1, y2] (x)
dx+ y2 (x)

∫
y1 (x) g (x)

W [y1, y2] (x)
dx

= −x2
∫ (

x3
)

(x)

x4
dx+ x3

∫ (
x2
)

(x)

x4
dx = −x2

∫
dx+ x3

∫
1

x
dx

= −x2 (x) + x2 ln |x|
= −x3 + x3 ln |x|

With yp (x), y1 (x) and y2 (x) in hand, we can now write down the general solution of the given
inhomogeneous ODE

y (x) = yp (x) + c1y1 (x) + c2y2 (x) = −x3 + x3 ln |x|+ c1x
2 + c2x
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By redefining the arbitary constant c1 (c1 → c1 + 1), this general solution could be written more
simply as

y (x) = x3 ln |x|+ c1x
2 + c2x
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