
LECTURE 31

Laplace Transforms and Piecewise Continuous Functions

We have seen how one can use Laplace transform methods to solve 2nd order linear Di¤ E�s with constant
coe¢ cients, and have even pointed out some advantages of the Laplace transform technique over our original
method of solving inhomogenous boundary value problems (where we �rst solved the characteristic equation
to �nd two independent solutions y1 and y2 of the corresponding homogenous equation, then used Variation
of Parameters to get a particular solution yp of the inhomogenenous equation, and �nally plugged y =
yp + c1y1 + c2y2 into the initial conditions to obtain the correct choice of c1 and c2).

Another big advantage is that the Laplace transform technique allows us to solve Di¤ E�s of the form

ay00 + by0 + cy = g (x)

where g (x) is only a piecewise continuous function.

Theorem 31.1. Suppose that

(i) f is a piecewise continuous function on the interval [0; A] for any positive A � R.
(ii) Suppose there exist positive constants M and K such that jf (x)j � Keat when 0 > M .

Then the Laplace transform

L [f ] (s) =
Z 1

0

f (x) e�sxdx

exists for all s > a.

Example 31.2. Step functions.

Let c be a positive number and let uc (t) be the piecewise continuous function de�ned by

uc (x) =

�
0 if x < c
1 if x � c

According to the theorem above uc (t) should have a Laplace transform for all s 2 [0;1); for evidently, if
we can take K = 2 and M = 1, then

uc (x) � 1 < Keax = 2e0x = 2 for all x > 1

1
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But this will also be apparent for the computation below

L [uc] =

Z 1

0

uc (x) e
�sxdx

=

Z c

0

uc (x) e
�sxdx+

Z 1

c

uc (x) e
�sxdx

= 0 +

Z 1

c

e�sxdx

= lim
N!1

�
1

�se
�sx
�����N

c

= 0 +
e�cs

s

=
e�cs

s

Theorem 31.3. If F (s) = L [f(x)] exists for s > a � 0, and if c is a positive constant, then

L [uc(x)f (x� c)] = e�csF (s) ; s > a

Conversely, if f (x) = L�1 [F (s)] then

uc (x) f (x� c) = L�1
�
e�csF (s)

�
Theorem 31.4. If F (s) = L [f(x)] exists for s > a � 0, and if c is a positive constant, then

L [ecxf (x)] = F (s� c)

Conversely, if f (x) = L�1 [F (s)] then

ecxf (x) = L�1 [F (s� c)]

Definition 31.5. Suppose f (x) is a function with the property that, for some �xed constant T ,

f (x+ T ) = f (x) for all x

Then we say that f is a periodic function with period T .

Theorem 31.6. If f (x) is periodic with period T , then

L [f (x)] = 1

1� e�sT
Z T

0

e�sxf (x) dx
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Proof.

L [f (x)] =

Z 1

0

e�sxf (x) dx

=

Z T

0

e�sxf (x) dx+

Z 1

T

e�sxf (x) dx

=

Z T

0

e�sxf (x) dx+

Z 2T

T

e�sxf (x) dx+

Z 3T

2T

e�sxf (x) dx+ � � �

=

Z T

0

e�sxf (x) dx+

Z T

0

e�s(x+T )f (x+ T ) dx+

Z T

0

e�s(x+2T )f (x+ 2T ) dx+ � � �

(after changing variables x ! x+ T ; x! x+ 2T ; etc:)

=

Z T

0

e�sxf (x) dx+ e�sT
Z T

0

e�sxf (x+ T ) dx+ e�2sT
Z T

0

e�sxf (x+ 2T ) dx+ � � �

=

Z T

0

e�sxf (x) dx+ e�sT
Z T

0

e�sxf (x) dx+ e�2sT
Z T

0

e�sxf (x) dx+ � � �

(using the fact that f (x) = f (x+ T ) = f (x+ 2T ) = � � � )

=
�
1 + e�sT +

�
e�sT

�2
+
�
e�sT

�3
+ � � �

�Z T

0

e�sxf (x) dx

=
1

1 + e�sT

Z T

0

e�sxf (x) dx

(using the identity
1

1�X = 1 +X +X2 +X3 + � � � )

1. Solving Di¤erential Equations with Discontinous Driving Functions

Example 31.7. Find the solution of

y00 + y = f (t) =

�
1 ; 0 � t � �

2
0 ; �

2 < t <1
y (0) = 0

y0 (0) = 0

(This might correspond to a simple harmonic oscillator that was initially jolted by a constant force for �
2

seconds, and left alone.)

Notice that the driving function f (t) is just

f (t) = u0 (t)� u�=2 (t)

Hence the Laplace transform of f (t) will be

L [f ] = L [u0]� L
�
u�=2

�
=
e�0s

s
� e

��s
2

s
=
1

s

�
1� e��s

2

�
So the Laplace transform of the di¤erential equation will be

s2L [y]� sy (0)� y0 (0) + L [y] = 1

s

�
1� e��s

2

�
or �

s2 + 1
�
L [y] = 1

s

�
1� e��s

2

�
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or

L [y] =
1

s (s2 + 1)

�
1� e��s

2

�
=

1

s (s2 + 1)
� e�

�s
2

s (s2 + 1)

Now

1

s (s2 + 1)
=
A

s
+
Bs+ C

s2 + 1
) 1 = A

�
s2 + 1

�
+Bs2 + Cs )

8<: A = 1
B = �1
C = 0

So
1

s (s2 + 1)
=
1

s
� s

s2 + 1
= L [1] + L [cos (t)] = L [1 + cos (t)]

or

L�1
�

1

s (s2 + 1)

�
= 1 + cos (t)

On the other hand, according to Theorem 31.3, if L [f ] = F (s), then

L�1
�
e�csF (s)

�
= uc (x) f (x)

so

L�1
�

e�
�s
2

s (s2 + 1)

�
= u�=2 (t)L�1

�
1

s (s2 + 1)

�
= u�=2 (t) (1 + cos (t))

Thus,

y = L�1 [L [y]]

= L�1
�

1

s (s2 + 1)
� e�

�s
2

s (s2 + 1)

�
= L�1

�
1

s (s2 + 1)

�
� L�1

�
e�

�s
2

s (s2 + 1)

�
= 1 + cos (t)� u�=2 (t) (1 + cos (t))
=

�
1� u�=2 (t)

�
(1 + cos (t))

2. Impulse Functions - The Dirac Delta Function

We have seen the Laplace transform technique is very good for solving di¤erential equations

ay00 + by0 + cy = g (x)

when the �driving function�g (s) is only piecewise continuous. Physically such a di¤erential equation might
arise if an oscillatory system were given an initial push, or a recurrent push. But what happens when an
oscillatory system is struck by a hammer?

To discuss such situations we �rst need a measure of how much energy is transferred to the system after the
application of a constant force. As a crude measure of the amount of energy imparted to a system driven
by a force g(t) we introduce the total impulse Ig de�ned by

Ig �
Z +1

�1
g(t)dt

The way to think about this quantity is as follows: if g(t) corresponds to the force applied to the system
at time t, then Ig is the aggregate force applied to system over all time. Note how the magnitude of Ig
depends not only on the magnitude of g (t), but also on how long the force was applied (i.e. how long g (t)
is non-zero).
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Now consider the following four driving functions

g1 (t) =

�
1
4 ; �2 � t � 2
0 ; jtj > 2 ) Ig1 = 1

g2 (t) =

�
1
2 ; �1 � t � 1
0 ; jtj > 1 ) Ig2 = 1

g3 (t) =

�
1 ; � 1

2 � t �
1
2

0 ; jtj > 1
2

) Ig3 = 1

g4 (t) =

�
2 ; � 1

4 � t �
1
4

0 ; jtj > 1
4

) Ig4 = 1

Note how the total impulse are all the same. More generally, if we set

g (t) = d� (t) =

�
1
2� ; �� � t � �
0 ; jtj > �

Then

Id� =

Z +1

�1
d� (t) dt =

Z �

��

1

2�
dt =

t

2�

�����
��
=
1

2�
(� � (��)) = 2�

2�
= 1

So all the driving functions d� (t), � 2 R+ deliver the same total impulse, Id� = 1. We use this sort of
driving functions to model situations like a hammer strike. For in such situations we want the duration of
the force to be nearly instantaneous, yet we want a �nite amount of energy to be transferred to the system.
In fact, the situation we would really like to handle is the case where all the energy is transferred at a single
instant t = 0. For this we would need something like

g (t) = lim
�!0

d� (t)

However, there is no limit to d� (t) as � ! 0, since lim�!0 d� (0) = lim�!0
1
2� = �1. Evidently, the family

of unit impulse functions functions d� (t), � > 0, fails to converge to a function as � ! 0.

The surprising fact (at least at �rst) is that even though

lim
�!0

d�

does not exist, its integral from �1 to +1 does: because

lim
�!0

Z 1

�1
d� (t) dt = lim

�!0
1 = 1

In fact, if f(x) is any continuous function on the real line

lim
�!0

Z +1

�1
d� (t) f (t) dt = f(0)

In this sense, we de�ne the Dirac delta function � (t)

� (t) = lim
�!0

d� (t)

with the understanding that it is not really a proper function, but nevertheless it has the property that
when integrated from �1 to +1 against any function f (t) the result is f(0) :Z +1

�1
� (t) f (t) dt = f(0)

Now here�s another surprising fact, � (t) is not a function, but nevertheless it can still be di¤erentiated (at
least formally), so long as we keep it inside an integral. To evaluateZ +1

�1
�0 (t) f(t)dt
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we simply apply integration by parts; using the integration by parts formula
R
udv = uv �

R
vdu and the

identi�cations

u = f (t) ; dv = �0 (t) dt

du = f 0 (t) dt ; v = � (t)

we have Z +1

�1
�0 (t) f(t)dt = f (t) � (t)j+1�1 �

Z +1

�1
� (t) f 0 (t) dt

evaluation of f (t) � (t) at the endpoints of integration yields 0 because � (t) = 0 for all t 6= 0, on the other
hand, from the de�nition of � (t) Z +1

�1
� (t) f 0 (t) dt = f 0(0)

Thus, Z +1

�1
�0 (t) f(t)dt = �f 0 (0) .

and so �0 (t) is the (generalized) function that when integrated against a function f (t), yields �f 0 (0)

Example 31.8. Solve the following initial value problem:

y00 + 2y0 + 2y = � (t� 1)
y(0) = 0

y0(0) = 0

(You can imagine this initial value problem as corresponding to a damped harmonic oscillator, initially at
rest, and then struck by a hammer at time t = 1.

Taking the Laplace transform of the di¤erential equation we get

s2L [y]� sy (0)� y0 (0) + 2 (sL [y]� y (0)) + 2L [y] = L [� (t� 1)] = e�s

or �
s2 + 2s+ 2

�
L [y] = e�s ) L [y] = e�s

s2 + 2s+ 2
Now

1

s2 + 2s+ 2
=

1

(s+ 1)
2
+ 1

= L
�
e�t sin (t)

�
Applying Theorem 31.3, viz,

If F (s) = L [f ] , then L�1
�
e�csF (s)

�
= uc (t) f (t� c)

we have

L�1
 
e�s

1

(s+ 1)
2
+ 1

!
= u1 (t)L�1

 
1

(s+ 1)
2
+ 1

!
(t� 1) = u1 (t) e�(t�1) sin (t� 1)

=

�
0 if t < 1

e�t+1 sin (t� 1) if t � 1


