
LECTURE 28

Series Solutions about Regular Singular Points

Recall x1 is a singular point for a di¤erential equation

y00 + p (x) y0 + q (x) y = 0

if

lim
x!x1

p (x) does not exist

or

lim
x!x1

q (x) does not exist

(Such singular points typically occur when p (x) or q (x) has a denominator that goes to 0 as x ! x1).
Recall also that a singular point x1 is said to be a regular singular point if both

lim
x!x1

(x� x1) p (x)

lim
x!x1

(x� x1)2 q (x)

exist. (The above condition is equivalent to the one of the preceding lecture where de�ned x1 to be a regular
singular point if the degree of the singularity of p (x) at x1 was � 1 and the degree of the singularity of
q (x) at x1 was � 2.)

In this lecture, I will show how the power series technique can be generalized to give (generalized power)
series solutions that are de�ned (and computable) right up to (but not necessarily including) a regular
singular point. (For singular points that are not regular, we have no such technique.)

1. Example: Bessel�s equation

The following partial di¤erential equation, Laplace�s equation,

r2� :=
@2�

@x2
+
@2�

@y2
+
@2�

@z2
= 0

is fundamental to many applications; ranging from electrostatics, to steady-state di¤usion problems.

If one converts to polar coordinates r and � where

r =
p
x2 + y2 ; � = tan�1

�y
x

�
Laplace�s equation becomes

(1)
@2�

@r2
+
1

r

@�

@r
+
1

r2
@2�

@�2
+
@2�

@z2
= 0:

A standard technique for solving such a PDE is called Separation of Variables. In this technique, one looks
for solutions of (1) of the form � (r; �; z) = R (r)� (�)Z (z); that is, a solution of (1) that factors into a
product of a function R that only depends on the coordinate r alone, times a function � that only depends
on � alone, times a function Z that only depends on z. After plugging this ansatz for � into the PDE (1),
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1. EXAMPLE: BESSEL�S EQUATION 2

doing some algebra, and making a rather simple observation, the original PDE is seen to be equivalent to
a system of 3 weakly coupled1 ordinary di¤erential equations:

d2Z

dz2
=

�
n2 �m2

�
Z

d2�

d�2
= �m2�

r2
d2R

dr2
+ r

dR

dr
+
�
n2r2 �m2

�
R = 0

The �rst two equations are just second order linear ODEs with constant coe¢ cients.

The third ODE is called Bessel�s equation. If we put it in standard form

R00 +
1

r
R0 +

�
n2 � m

2

r2

�
R = 0

we see that it has a regular singular point at r = 0.

The theory and application of Bessel functions (the solutions of Bessel type equations) is a very broad and
important �eld. However, in this course, so that the main ideas of the generalized power series technique
are presented as clearly as possible, we�ll focus on the special case where n = 1 and m = 0;

(2) r2R00 + rR0 + r2R = 0

Solutions of (2) are called Bessel functions of order 0 :

Let us rewrite (2) as

(3) x2y00 + xy0 + x2y = 0

(just changing the labels of variables to the way we usually write an ODE in this course). We shall look for
solutions of (3) of the form

y = xr
1X
n=0

anx
n = a0x

r + a1x
r+1 + a2x

r+2 + � � �

=

1X
n=0

anx
n+r

We can assume (without loss of generality) that a0 6= 0; so that a0xr really is the leading term of this
solution.

We have

x2y00 = x2
1X
n=0

(n+ r) (n+ r � 1) anxn+r�2 =
1X
n=0

(n+ r) (n+ r � 1) anxn+r

xy0 = x
1X
n=0

(n+ r) anx
n+r�1 =

1X
n=0

(n+ r) anx
n+r

x2y = x2
1X
n=0

anx
n+r =

1X
n=0

anx
n+r+2 =

1X
n=2

an�2x
n+r

and so when we replace x2y00, xy0 and x2y with their series expressions we get

0 =

1X
n=0

(n+ r) (n+ r � 1) anxn+r +
1X
n=0

(n+ r) anx
n+r +

1X
n=2

an�2x
n+r

1By weakly coupled, I mean that the three ordinary di¤erential equations are related to each other only by the fact that
they involve the same constants m and n.



1. EXAMPLE: BESSEL�S EQUATION 3

The �rst two series begin two steps before the last series, so before we can combine the power series we
have to peel o¤ the two initial terms of the �rst two series:

0 = (r) (r � 1) a0xr + (r + 1) (r) a1xr+1 +
1X
n=2

(n+ r) (n+ r � 1) anxn+r

ra0x
r + (r + 1) a1x

r+1 +
1X
n=2

(n+ r) anx
n+r +

1X
n=2

an�2x
n+r

= [r (r � 1) + r] a0xr + (r (r + 1) + r + 1) a1xr+1

+
X
r=2

[(n+ r) (n+ r � 1) an + (n+ r) an + an�2]xn+r

Note that we have now strati�ed the right hand side as sum of terms, each term having a distinct power of
x as a factor.

We now demand that the total coe¢ cient of each power of x separately vanish.

The lowest order term is

[r (r � 1) + r] a0xr = r2a0xr

For this to vanish for all x we need

r2a0 = 0 ) r = 0

since our ansatz for y assumes that a0 6= 0.

The next higher order term is (using r = 0)

(r (r + 1) + r + 1) a1x
r+1 = (0 (0 + 1) + 0 + 1) a1x = a1x

So if this to vanish for all x we must have a1 = 0.

Let�s now look at the terms in the sum
P1

n=2. These are

[(n+ r) (n+ r � 1) an + (n+ r) an + an�2]xn+r = [n (n� 1) an + nan + an�2]xn

= (nan + an�2)x
n

For these to all vanish we need

an =
�an�2
n

; n = 2; 3; 4; 5; : : :

We can now begin to write down a solution. We have

a0 = arbitrary constant

a1 = 0

a2 =
�a0
2

a3 =
�a1
3

= �0
3
= 0

a4 =
�a2
4

=
a0
4 � 2 =

a0
222!

a5 = �a3
2
= 0

a6 = �a4
6
= � a0

6 � 4 � 2 = �
a0
233!

We thus observe the following pattern

an =

�
(�1)k a0

2kk!
if n = 2k

0 if n is odd



2. ANOTHER EXAMPLE 4

And so we can write

y (x) = a0

1X
k=0

(�1)k

2kk!
x2k

as the solution to (3).

2. Another example

Let�s now consider the di¤erential equation

(28.1) 2x2y00 � xy0 + (1 + x)y = 0 :

This equation evidently has a regular singular point at x = 0. We will look for a solution around x = 0 by
making an ansatz for y(x) by combining our ansatz for power series solutions about regular points with the
ansatz we made for Euler type equations. More explicitly, we shall take

(28.2) y(x) = xr
1X
n=0

anx
n =

1X
n=0

anx
n+r :

We can suppose without loss of generality that a0 6= 0; i.e., we assume r to be chosen such that the �rst
nonzero term in the series is aoxr. Plugging (28.2) into (28.1) yields
(28.3)

0 = 2x2
P1

n=0(r + n)(r + n� 1)anxr+n�2 � x
P1

n=0(r + n)anx
r+n�1 + (1 + x)

P1
n=0 anx

r+n

=
P1

n=0 2(r + n)(r + n� 1)anxr+n �
P1

n=0(r + n)anx
r+n +

P1
n=0 anx

r+n +
P1

n=0 anx
r+n+1

=
P1

n=0 (2(r + n)(r + n� 1)� (r + n) + 1) anxr+n +
P1

n=1 an�1x
r+n

= (2r)(r � 1)� r + 1) a0 +
P1

n=1 ((2(r + n)(r + n� 1)� (r + n) + 1) an + an�1)xr+n

Hence, we need

(28.4) 0 = (2r)(r � 1)� r + 1 = 2r2 � 3r + 1

(28.5) 0 = an�1 + (2(r + n)(r + n� 1)� (r + n) + 1) an

The �rst relation is a quadratic equation for r. It is called the indicial equation for (28.1). Since

(28.6) 2r2 � 3r + 1 = (2r � 1)(r � 1)
we must have

(28.7) r =
1

2
; 1

The second equation (28.5) furnishes a recursion relation that allows us to �x all coe¢ cients an in terms of
ao and r.

Setting r = 1
2 we have

(28.8)
0 = an�1 +

�
2( 12 + n)

2 � 3( 12 + n) + 1
�
an

= an�1 + [n(2n� 1)] an
so

(28.9) an =
�an�1
n(2n� 1)

Thus,

(28.10)

a1 = �a0
(1)(2�1) = �a0

a2 = �a1
(2)(4�1) =

a0
6

a3 = �a2
(3)(6�1) =

�a0
90
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So one solution would be

(28.11) y1(x) = a0x
1=2

�
1� x+ 1

6
x2 � 1

90
x3 + � � �

�
:

When r = 1 we have

(28.12) 0 = an�1 +
�
2(1 + n)2 � 3(1 + n) + 1

�
an

or

(28.13) an =
�1

2(1 + n)2 � 3(1 + n) + 1an�1 =
�an�1
n(2n+ 1)

:

So

(28.14)

a1 = �a0
1(2+1) = �

a0
3

a2 = �a1
2(4+1) =

a0
30

a3 = �a2
3(6+1) = �

a0
630

Thus, a second solution of (28.1) would be

(28.15) y2(x) = aox

�
1� 1

3
x+

1

30
x2 � 1

630
x3 + � � �

�
:

The general solution of (28.1) will be a linear combination of y1(x) and y2(x):

(28.16) y(x) = c1x
1=2

�
1� x+ 1

6
x2 � 1

90
x3 + � � �

�
+ c2x

�
1� 1

3
x+

1

30
x2 � 1

630
x3 + � � �

�
:

In summary, to �nd a solution of (28.1), we

(1) Assume there is a solution of the form y(x) = xr
P1

n=0 anx
n, with a0 6= 0.

(2) Plug this expression for y(x) into the di¤erential equation and set the total coe¢ cients of each
power of x equal to zero. This lead to
(i) a quadratic equation for r (the indicial equation)
(ii) a set of recursion relations relating the coe¢ cients an

(3) Find the two roots r1 and r2 of the indicial equations, and then, for each root ri used the recursion
relations to express all the coe¢ cients an in terms of ao.

(4) Write down a corresponding solution for each root yi(x) for each root ri of the indicial equation.
(5) Write down the general solution as

y(x) = c1y1(x) + c2y2(x) :

WARNING: This technique works produces two linearly independent solutions only when:

(i) There are two distinct roots r1 and r2 of the indicial equation.
(ii) The di¤erence r1 � r2 is not an integer.

See Sections 5.7 and 5.8 of the text for a discussion of what happens and how to procede when these criteria
are not meet.

Let�s do another example

2xy00 + y0 � y = 0

This equation has a regular singular point at x = 0. So we�ll try to �nd a solution in the form of a generalized
power series about x = 0.
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Ansatz: y =
P1

n=0 anx
n+r

0 = 2xy00 + y0 � y

=
1X
n=0

2 (n+ r) (n+ r � 1) anxn+r�1 +
1X
n=0

(n+ r) anx
n+r�1 �

1X
n=0

anx
n+r

=
1X
n=0

[(n+ r) (2n+ 2r � 2) an + (n+ r) an]xn+r�1 �
1X
n=0

anx
n+r

=
1X
n=0

[(n+ r) (2n+ 2r � 1) an]xn+r�1 �
1X
n=0

anx
n+r

=
1X

n=�1
[(n+ r + 1) (2n+ 2r + 1) an+1]x

n+r �
1X
n=0

anx
n+r

= r (2r � 1) a0xr�1 +
1X
n=0

[(n+ r + 1) (2n+ 2r + 1) an+1]x
n+r �

1X
n=0

anx
n+r

= r (2r � 1) a0xr�1 +
1X
n=0

[(n+ r + 1) (2n+ 2r + 1) an+1 � an]xn+r

We now demand that the total coe¢ cient of each distinct power of x vanish. This leads us to the following
equations

r (2r � 1) a0 = 0

(n+ r + 1) (2n+ 2r + 1) an+1 � an = 0 ; n = 0; 1; 2; 3; : : :

We always assume that a0 6= 0 (otherwise the leading term of our ansatz for y is not a0xr). Hence, the �rst
equation requires

r (2r � 1) = 0 ) r = 0;
1

2
We thus have determined that there are two and only two possible choices for r. The coe¢ cients an will
be determined by

an+1 =
an

(n+ r + 1) (2n+ 2r + 1)
; n = 0; 1; 2; 3; : : :

� Solution with r = 0
The recursion relations in this case reduce to

an+1 =
an

(n+ 1) (2n+ 1)
; n = 0; 1; 2; 3; : : :

Thus, if a0 = c1, then

a1 =
a0

(1) (1)
= c1

a2 =
a1

(2) (3)
=
c1
6

a3 =
a2

(3) (5)
=
c1
90

and so the �rst four terms of this solution will be

y = a0x
r + a1x

r+1 + a2x
r+2 + a3x

r+3 + � � �
= c1 + c1x+

c1
6
x2 +

c1
90
x3 + � � �

= c1y1
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where
y1 = 1 + x+

1

2
x2 +

1

90
x3 + � � �

� Solution with r = 1
2

In this case the recursion relations reduce to

an+1 =
an

(n+ r + 1) (2n+ 2r + 1)
=

an�
n+ 3

2

�
(2n+ 2)

=
an

(2n+ 3) (n+ 1)
; n = 0; 1; 2; 3; : : :

Setting a0 = c2 we then get

a1 =
a0

(3) (1)
=
c2
3

a2 =
a1

(5) (2)
=
c2
30

a3 =
a2

(7) (3)
=
c2
630

and so the �rst four terms of the solution will be

y = a0x
r + a1x

r+1 + a2x
r+2 + a3x

r+3 + � � �
= c2x

1
2 +

c2
3
x3=2 +

c2
30
x5=2 +

c2
30
x7=2 + � � �

= c2
p
x

�
1 +

1

3
x+

1

30
x2 +

1

630
x3 + � � �

�
= c2y2

where

y2 (x) =
p
x

�
1 +

1

3
x+

1

30
x2 +

1

630
x3 + � � �

�

3. The case when r1 � r2 is an integer

As we remarked above, when the indicial equation has two distinct roots, r1 and r2, and r1 � r2 is not an
integer then the generalized power series method will lead to two independent solutions

y1 = xr1
1X
n=0

anx
n

y2 = xr2
1X
n=0

a0nx
n

where the coe¢ cients an, a0n are determined by applying the recursion relations using, respectively, r = r1
and r = r2 in the recursive formulae.

If on the other hand, r1 � r2 is an integer, it turns out that only one of the roots (the larger one) can be
employed to solve the recursion relations (typically, if one tries to use the smaller root to compute the an,
then one encounters a division by zero in the recursive computation of the an).

Nevertheless, there are techniques that yield a second solution when r1 � r2 is an integer. However, these
techniques are beyond the scope of this course. The interested student can read up on this situation in
Section 5.6 of the text.


