
LECTURE 27

Singular Points and the Convergence of Series Solutions

As it stands our method of finding power series solutions to differential equations of the form

(27.1) y′′ + p(x)y′ + q(x)y = 0

is purely formal. For a series solution

(27.2)

∞∑
n=0

an(x− xo)n

might not converge for any finite x (and we need the series to converge if we are to use it to define a
legitimate function of x).

To discuss this situation with the care it deserves, we must first introduce a little more formal development.

Definition 27.1. A function f is said to be analytic about the point xo if it has a power (Taylor) series
expansion about that point;

(27.3) f(x) =

∞∑
n=0

an(x− xo)n

with some non-zero radius of convergence.

Theorem 27.2. If the functions p(x) and q(x) are analytic at the point xo, then one can find (linear)
functions an of ao and a1 so that the general solution of

(27.4) y′′ + p(x)y′ + q(x)y = 0

can be expressed as a power series solution

(27.5) y(x) =

∞∑
n=0

an(ao, a1)(x− xo)n = aoy1(x) + a1y2(x) ,

where y1 and y2 are two linearly independent solutions of (27.4) which are analytic at xo. Moreover, the
radius of convergence of the power series expansions of y1 and y2 is at least as large as the minimum of the
radii of convergence of the power series for p(x) and q(x).

Thus, if we know the radii of convergence p(x) and q(x) we needn’t do anything as laborious as compute
the radius of convergence of our solution using the ratio test (which is really only going to work if you have

an explicit formula for the ratio
∣∣∣ an

an+1

∣∣∣). The following theorem is very useful in determining the radii of

convergence of the power series expansions of p(x) and q(x).

Theorem 27.3. If f(x) is the ratio of two polynomial functions;

(27.6) f(x) =
A(x)

B(x)

and B(xo) 6= 0, then

(i) f(x) has a power series expansion about x = xo.
(ii) The radius of convergence of this power series about xo is equal to the distance (in the complex

plane) between xo and the nearest zero of B(x).
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Example 27.4. What is the radius of convergence of the Taylor expansion of

(27.7) f(x) =
1

1 + x2

about x = 0? About x = 2?

The denominator vanishes when x = ±i. To determine the radius of convergence we need only compute
the distance in the complex plane between x = ±i and the expansion point in question. In terms of the
Cartesian coordinates of the complex plane the points x = ±i are given by, respectively, (0,1) and (0,-1),
while the real points 0 and 2 are given by, respectively, (0,0) and (2,0). Thus, the distance between 0 and
±i is

(27.8)
√

(0− 0)2 + (0∓ 1)2 = 1 ,

so the radius of convergence of the Taylor series expansion of f(x) about 0 is 1. The distance between 2
and ±i is

(27.9)
√

(2− 0)2 + (0∓ 1)2 =
√

5 ,

so the radius of convergence of the Taylor series expansion of f(x) about x = 2 is
√

5.

Example 27.5. Find the radius of convergence of the Taylor series expansion of

(27.10) f(x) =
1

(x + 2)(x− 3)

about xo = 4.

The zeros of the denominator are x = −2, 3. The distance (in the complex plane from xo = 4 = (4, 0) to
the closest zero x = 3 = (3, 0) is

(27.11)
√

(4− 3)2 − (0− 0)2 = 1 ,

so the radius convergence of the Taylor series expansion of f(x) about xo = 4 is 1.

Let us now combine the two theorems to determine the minimal radius of convergence of the power series
solution of

(27.12) (x2 − 2x− 3)y′′ + xy′ + 4(x− 3)y = 0

about xo = 4.

This differential equation is equivalent to

(27.13) y′′ +
x

x2 − 2x− 3
y′ +

4

x + 2
y = 0 .

The zeros of x2 − 2x − 3 = (x − 3)(x + 2) are x = 3,−2, and -2 is the only zero x + 2. Therefore the
singularity of

(27.14) p(x) =
x

x2 − 2x− 3

and/or

(27.15) q(x) =
4

x + 2

that is closest to xo = 4 is x = 4. Since |4 − 3| = 1, the radius of convergence of a power series expansion
of p(x) about xo = 4 is 1, the minimal radius of convergence of a series solution of (27.12) will be 1.
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1. Solutions near Regular Singular Points

Recall from the preceding section that a differential equation

(27.16) y′′ + p(x)y′ + q(x) = 0

always has a power series solution about a point xo so long as the functions p(x) and q(x) have power series
expansions around xo. We will now discuss the case when p(x) or q(x) has a singularity at xo.

Example 27.6. Consider the differential equation

(27.17) y′′ − 2

x
y′ +

2

x2
y = 0 .

One easily verifies that the functions

(27.18)
y1(x) = x
y2(x) = x2

form a linearly independent set of solutions to (27.17). Note that y1(x) and y2(x) are both well-behaved
functions at the point x = 0 (where p(x) = − 2

x and q(x) = 2
x2 both have a singularity).

Example 27.7. Consider the following differential equation:

(27.19) y′′ − 2

x2
y = 0 .

Because of the singularity of −2x2 at xo = 0, Theorem 27.2 above does not guarantee the existence of a power
series solution around xo = 0. However, one can easily check that

(27.20)
y1(x) = x2

y2(x) = 1
x

form a set of linearly independent solutions to (27.19). We note that the solution y1(x) is a perfectly
well-behaved at the point x = 0; however, the solution y2(x) is singular at the point x = 0.

The preceding examples show that just because a differential equation has a singularity it does not necessarily
follow that there are no solutions or even that the solutions are ill-behaved at the singularity.

Definition 27.8. A differential equation of the form

(27.21) y′′ + p(x)y′ + q(x)y = 0

is said to have a singular point at xo if either

(27.22) lim
x→xo

p(x)

or

(27.23) lim
x→xo

q(x)

does not exist.

Definition 27.9. Suppose xo is a singular point of

(27.24) y′′ + p(x)y′ + q(x)y = 0 .

xo is said to be a regular singular point (of this differential equation) if the singularity of p(x) is no
worse than

(27.25)
1

x− xo

and the singularity of q(x) is no worse than

(27.26)
1

(x− x0)2
.

More precisely, xo is a regular singular point if both

(27.27) lim
x→xo

(x− xo) p(x)



1. SOLUTIONS NEAR REGULAR SINGULAR POINTS 4

and

(27.28) lim
x→xo

(x− xo)
2
q(x)

exist. Otherwise, xo is called an irregular singular point.

Example 27.10. The differential equation

(27.29) y′′ +
3

(x− 1)(x + 1)2
y′ +

2x + 1

(x− 2)2(x + 2)(x− 1)3
y = 0

has singular points at x = 1,−1, 2,−2.

Now
Singular Point xo limx→xo

(x− xo)p(x) limx→xo
(x− xo)2q(x) Type

1 3
4 ∞ irregular

−1 ∞ 0 irregular
2 0 5

4 regular
−2 0 0 regular

So x = ±1 are irregular singular points and x = ±2 are regular singular points.

Example 27.11. Identify and classify the singular points of

(27.30) x2(1− x2)2y′′ + x(1 + x)2y′ + (1− x)y′ .

In this case, when we divide by x2(1− x2)2 to put the equation in standard form, we have

(27.31) p(x) =
x(1 + x)(1 + x)

x2(1 + x)2(1− x)2
=

1

x(1− x)2

and

(27.32) q(x) =
(1− x)

x2(1 + x)2(1− x)2
=

1

x2(1 + x)2(1− x)
.

Thus, we have regular singular points at x = 0,−1 and an irregular singular point at x = 1.


