LECTURE 26

Differential Equations with Polynomial Coefficients

In the last lecture we considered a number of examples of differential equations of the form
(26.1) P(z)y" +Qz)y + R(z)y =0

and looked for solutions of the form

(26.2) y(@) = an (x—z,)"
n=0

Before considering one more example, let me first articulate the general procedure.

Step 1. Substitute (26.2) into (26.1). This will produce an equation of the form

0 = Y2 n(n—Da,P@) (x —2,)" 2 + 300 g nanQ(x) (z — 2,)" "
(26.3) I g anR(z) ( — 1) ’

Step 2. Unfortunately, depending on the nature of the polynomials, it may happen that none of three series
n (26.3) is a power series in (x — ,). For example, if P(z) = 2% and z, = 1, then the first series is

oo

(26.4) > n(n - ana® (x - 1)

n=0

which is not a power series (i.e., an expression of the form ) b,(z — 1)™ with each b, a constant). To
convert the series in (26.3) into to power series we must replace the polynomials P(z), Q(x), and R(z) with
their Taylor expansions about z, = 1. If we set

Pn o (o)
(265) n = % ?1%9 (.130)
Tn = % fo (xo)

we can write

P(z) = Z?iopn (- xO)n )
(26.6) Qx)=>"0an (x—x0)"
R(z)=Y2grn(z—z0)" .

Actually, since polynomial of degree D can have at most D non-vanishing derivatives, each of the Taylor
expansions (26.6) will terminate after a finite number of terms:

P(I) Zz Opn (.’IJ ) 9
(26.7) Qz) = Zz 0 qn (T — xo) )
R  (

r—x,)"

1
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where dp, dg, and dg are the degrees of the polynomials P(x), Q(x), and R(X). Inserting the expression
(26.7) into (26.3) we get

o
|

T, Sl s )
+ 3o Zéﬁo NG (T — xo)”ﬂ—
+ E;o:() Z,Ljo AnTn (x _ xo)n-’r’t

(26.8)
d o n+i1—2
= Zijo dn=0 n(n - 1)anpn ((ﬂ - x(jr)‘ .
+ Zégo Zzo:o Nnangn (‘T - mo)Z‘ !
+ 22120 2neo @nTn (T — To)
or

n+dp—2

=)
|

D onzon(n — 1)poan (z — $0)n72 +o Yo n(n = Dpagan (;’f — o)
(26.9) + >0 o ngoan (z — 2o)" e+ > Ndg an (2 — zp) et
+ ZZO:O roan (T —x,)" 4+ + ZZO:O Tdpan (T — %)nerR

Step 3. The next step is to collect all the terms consisting of like factors of (z — xo)i. To accomplish this
we shift the summation index n in each series in (26.9) so that the k" term in the new series has (z — z,)"

as a factor. One obtains
(26.10)

0 = S22 ,(k+2)(k+ Dpoasss (x — ) +---
et g (k2 —dp)(k+1—dp)piparia—dp (T — %)k
+ > ek + Dgoars1 (z — zo) 4+ EZO:AMQ (k+1—-4dQ) qaoart1-do (x — )
+ Z;O:o Tolk ($ — $o)k + -+ Z;O:dR TdrAk—dp (:L‘ — :L'o)k

k

Here one must be a bit careful. Notice that the various series appearing in the above equation do not have
the same initial value of k. Before consolidating the various series in (26.10) in a single series we must make
sure they all start off at the same value of k. I will discuss this point momentarily with an example. But
certainly for k large enough all the series in (26.10) will contribute terms proportional to (z — xo)k. One
can then read off from (26.10) the general recursion relation

0 = (k+2)(k+1)poari2+---(k+2—dp)(k+1—dp)agta—dp
(26.11) +(k‘ + 1)q0ak+1 + -+ (k‘ +1-— dQ)quakJrl,dQ
+roar + -+ TdpGk—dg

which is valid for & > Maz {—2+ dp,—1+dg,dr}. Actually, we can use this relation for all k£ so long as
we consistently define

(26.12) a; =0 , ifi<0.

Step 4. Use the recursion relation (26.11) to express all the coefficients a,, in terms of ap and a; (you may
also need to use the relations 0 = a_; = a_g = a_3--- coming from (26.12)).
ExaMPLE 26.1. Find a power series solution of

(26.13) 22y +(x+1)y=0

about the point xz, = 1.

Plugging

(26.14) y(x) = Z an(z—1)"
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into (26.13) yields

oo

(26.15) Z n(n —ap,z*(x —1)""2 + i an(x +1)(x —1)"

=0 n=0
Now the Taylor expansions of f(z) = 22 and g(z) = x + 1 about z, = 1 are

22 = 142z —1)+ (z— 1)
(26.16) s+l = 24 (z—1)
Plugging the right hand sides of (26.16) into (26.15) yields
0 = Y onn—1a, (1+2(x—1)+ (z—1)?) (z —1)"2
+3ntotn 24 (@ = 1)) (@ —1)"
(26.17)

Yoo on(n—Day(z —1)" "2+ 3 2n(n — 1)a,(z — 1)

+ 3 nson(n — Dag(z — 1)" + 3707 2an(z — 1) + 3277 g an(z — 1)
We now shift the summation indices in each series so that in the k" term, (x — 1) appears to the k' power.
One gets

0 = 0+0+ Yo g(k+2)(k+ 1)ak+2(x —DF 0+ 30020k + Dk(z — DFagyr (z — 1)k

+ > oo k(k — Dag(z — 1) + 377 ) 2an(x — DF + 3772 ap—1(x — 1)F
Unfortunately, the last series begins with k = 1, instead of kK = 0. This, however, is easy to remedy; we
simply a_1 = 0, so that

(26.19) Zaklel +Zak1x71 Zaklel

Thus, having arranged things so that all series start off at the same pomt k = 0 and we now consolidate
the right hand side of (26.18) into a single series:

(26.20) 0 = Z%O ((k+2)(k+ Dags2 +2(k + Dkag1 + k(lgc — Dag + 2a + ag—1) (z — ;)k
Sreo ((k+2)(k+ 1)ags2 + 2k(k + Dags1 + (K> — k + 2)a + ap—1) (z — 1)
The demand that the total coefficient of (z — 1) vanish then implies
—2k(k + 1Vapy1 — (k> — k +2)ax — ap_1
(k+2)(k+1)

(26.18)

(26.21) Apy2 =

Thus, given that a_; = 0, we have

_ 0-2a0-0 __
a2 = m = —ag
—2)(26.3)az—(26.2)a; — —Tan—

(26.22) as = ) (;2}75)( 2(6_2)>a1 20 _ =Tag=20:

a — (=4)(26.3)az—4az—ay — (14ap—4ai+4ap—ai) _ 18ag—baq

4 (26.4)(26.3) ) 5
Thus, to the order of (z — 1)* the general solution of (26.13) is

y(z) = ao+ai(z—1)—ag(z—1)? - 1oz (y —1)3

+18ag e (g — 1)t 4.

(26.23)



