
LECTURE 23

Solutions via Power Series

0.1. Introduction. Before discussing power series it is instructive to �rst admit up front the ludicrous
strategy we have employed thus far to �nd solutions to second order linear di¤erential equations. At this
point only there are only two classes of equations that we can solve

� second order linear with constant coe¢ cients
� Euler type equations

and our procedure for constructing a solution has been to �rst guess what the solution should look like
(y(x) = e�x for linear equations with constant coe¢ cients, and y(x) = xr for Euler type equations) and
then plug in to the di¤erential equation to �nd a choice of � or r that actually makes our given guess a
solution. Such a strategy surely cannot work in any generality, because in general we have no clue as to
what the solution of a second order equation looks like.

But, in fact, we can employ this same strategy with great success; it�s just that we have to be su¢ ciently
general in guessing what a solution should look like.

Here�s the basic idea in a nutshell. Every smooth function has a unique representation in terms of its Taylor
series about x = 0:

f(x) =
1X
n=0

f (n) (0)

n!
xn (1)

= f(xo) + f
0(0)x+

1

2
f 00(0)x+

1

6
f 000(0)x3 + � � �

Think of this as an expresion for f (x) of the form

f (x) = a0 + a1x+ a2x
2 + a3x

3 � � �

If we can �gure out a way choose the constant coe¢ cients a0; a1; a2; a3; : : : so that a di¤erential equation is
satis�ed, then we�ve found solution.

In fact, we�ve done this already for �rst order equations. Let me show you that the same ideas apply in the
second order case.

Example 23.1. Find the �rst �ve terms of the Taylor expansion about x = 0 of the solution to

y00 + 2xy0 + y = 0

y(0) = 1

y0(0) = 0

The Taylor expansion of the solution y(x) about x = 0 is given by the formula

y(x) = y(0) + y0(0)x+
y00(0)

2!
x2 +

y000(0)

3!
x3 +

yiv(0)

4!
x4 + � � �

1
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To make this explicit, we need to �gure out numerical values for y(0); y0(0); y00(0); : : :. Now the values of
y(0) and y0(0) are detemined by the initial conditions

y(0) = 1

y0(0) = 0

The di¤erential equation itself, evaluated at x = 0 gives us the value of y00(0):

y00(0) = (�2xy0 � y) jx=0 = 0� y(0) = �1
To get a value for y000(0) we di¤erentiate the di¤erential equation and evaluate the result at x = 0:

y000(0) = (�2y0(x)� 2xy00(x)� y0(x)) jx=0 = 0� 0� 0 = 0
To get a value for yiv(0) we di¤erentiate the di¤erential equation again:

yiv(0) =
�
�2y00(x)� 2y00(x)� 2xy00

0
(x)� y00(x)

�
jx=0 = �2(�1)� 2(�1)� 0� (�1) = 5

Thus, to order x4

y(x) = y(0) + y0(0)x+
y00(0)

2!
x2 +

y000(0)

3!
x3 +

yiv(0)

4!
x4 + � � �

= 1 + 0x� 1
2
x2 � 0

6
x3 +

5

24
x4 + � � �

= 1� 1
2
x2 +

5

24
x4 + � � �

�

Note that this Taylor series technique is exactly the same as the one we discussed for �rst
order di¤erential equations. What we shall be doing in the next couple of lectures is sys-
tematizing this procedure for the case of second order linear di¤erential equations. In doing
so, we will not only be able to write down the Taylor expansions of solutions satisfying given
initial conditions, but also the Taylor expansions of general solutions as well.

Let�s condense our notation a bit by setting

(2) an =
f (n)(xo)

n!

so that Taylor expansion can be expressed as

(3) f(x) =

1X
n=0

an(x� xo)n

If we had a formula for f(x) then obviously we could compute each of the coe¢ cients an in its Taylor
expansion using equation (2). On the other hand, if we have formulas for all the coe¢ cients an then can
still write down the Taylor expansion of f(x) via (3) and so we have e¤ectively determined f(x). The point
of all this is that every smooth function can be expressed in the form (3) and by determining all the values
of the constants an you e¤ectively specify f(x).

Now I can state our strategy for solving a genereal second order linear di¤erential equation

y00 + p(x)y0 + q(x)y = 0

We shall assume that our solution is a smooth function and so it has a Taylor expansion about a given point
xo:

y(x) =
1X
n=0

an(x� x0)n

We�ll then plug this expression for y(x) into the di¤erential equation and try to determine what this implies
about the coe¢ cients an: What we�ll �nd is that the di¤erential equation will e¤ectively determine all
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the coe¢ cients an in terms of the �rst two; and that the �rst two coe¢ cients, a0 and a1; are determined
completely by intitial conditions at xo. Thus, we will be able to solve second order linear equations in the
sense that we can construct the Taylor series representations of their solutions.

Before we can undertake this program in ernest we had better �rst review the basic theory concerning
expressiions of the form

1X
n=0

an(x� xo)n

0.2. Review of Power Series. Recall that a formal power series about xo is a formal expression
of the form

(4)
1X
n=0

an(x� xo)n = a0 + a1(x� xo) + a2(x� xo)2 + � � � :

The reason for the quali�cation formal is that an expression of this form (as it stands) really doesn�t make
any mathematical sense: there is no way one can actually carry out the in�nite summation implied by the
notation.

However, using the notion of limits one can sometimes prescribe some real mathematical meaning to formal
power series.

Definition 23.2. A formal power series
P1

n=0 an(x� xo)n converges at a point x if the limit

lim
N!1

NX
n=0

an(x� xo)n

exists.

Definition 23.3. A formal power series
P1

n=0 an(x� xo)n is said to converge absolutely if the limit

lim
N!1

NX
n=0

jan(x� xo)nj

exists.

We recall that absolute convergence implies convergence but that convergence does not necessarily guarantee
absolute convergence.

Theorem 23.4. If a formal series
P1

n=0 an(x�xo)n converges for some x 6= 0, say x = x1, then the series
converges absolutely for all x such that

jx� xoj < jx� x1j :

The largest number R such that a power series
1X
n=0

an(x� xo)n

converges for all x 2 (xo�R; xo+R) (or equivalently, for all x such that jx� xoj < R) is called the radius
of convergence of the power series.

The following test is very useful in determining whether a given power series converges.

Theorem 23.5. (Ratio Test.) A formal series
P1

n=0 an(x� xo) converges absolutely if

1 > lim
n!1

����an+1(x� xo)n+1an(x� x0)n

���� = jx� xoj limn!1

����an+1an

���� :
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This test implies that the radius of convergence of
P1

n=0 an(x� xo)n is given by

R =
1

limn!1

���an+1an

��� = lim
n!1

���� anan+1
����

Example 23.6. Find the radius of convergence of the following power series.
1X
n=0

n

2n
(x� 1)n :

Well, we have an = n
2n , so

R = lim
n!1

���� n
2n

n+1
2n+1

���� = lim
n!1

2
n

n+ 1
= 2 lim

n!1

n

n+ 1
= 2 :

We conclude that the series converges for all x such that jx� 1j < 2, i.e., for all x 2 (�1; 3).

Now if a power series
P1

n=0 an(x� xo)n has a radius of convergence R then for all x 2 (xo �R; xo +R) we
have a well- de�ned function of x; viz.,

f(x) = lim
N!1

NX
n=0

an(x� xo)n :

This function is not only continuous within the interval (xo �R; xo +R), all of its derivatives f (n) exist as
well. In fact, the derivative of f is the function de�ned by

f 0(x) = lim
N!1

NX
n=0

nan(x� xo)n�1

which is also de�ned for all x 2 (xo �R; xo +R).

Theorem 23.7. (Taylor�s Theorem.) Suppose that f is continuous and has derivatives of all orders in
a neighborhood of xo, then f can be expressed as a power series

f(x) =

1X
n=0

an(x� xo)n

with

an =
f (n)(xo)

n!
:


