LECTURE 17

Homogeneous Equations with Constant Coefficients, Cont’d

Recall that the general solution of a 2"? order linear homogeneous differential equation
(17.1) Lyl =y" +p(x)y' + q(x)y =0

is always a linear combination

(17.2) y(z) = ciyi(z) + caya(z)

of two linearly independent solutions y; and y2, and we’ve seen that if we’re given one solution y; (z) we
can compute a second linearly independent solution using the method of reduction of order. We will now
turn to the problem of actually finding a single solution y; (z) of (17.1).

We let us now return to the special case of a homogeneous second order linear differential equation with
constant coefficients; i.e., differential equations of the form

(17.3) Y +py +qy=0
where p and ¢ are constant.

We saw in Lecture 11, that one can construct solutions of the differential equation (17.3) by looking for
solutions of the form

(17.4) y(z) = e

Let us recall that construction. Plugging (17.4) into (17.3) yields
(17.5) 0 = A2eM 4 pAe® + g = ()\2 +pA+ q) e

Az

Since the exponential function e** never vanishes we must have

(17.6) M4ph+q¢=0

Equation (17.6) is called the characteristic equation for (17.3) since for any A satisfying (17.6) we will
have a solution y(z) = e of (17.3).

Now because (17.6) is a quadratic equation we can employ the Quadratic Formula to find all of its roots:

—p+/p2 =4
(17.7) ANiphtg=0 = )\:W :

Note that a root A of (17.6) need not be a real number. Indeed, if p? — 4¢q < 0, then in order to compute
A via the Quadratic Formula we have to take the square root of a negative number and that forces us into
the realm of complex numbers. We shall postpone temporarily the case when a root A is complex and first
discuss the case when the roots of (17.6) are all real. This requires p? — 4q > 0.

Case (i): p*> —4¢ >0
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Because p? — 4q is positive, \/p? — 4q is a positive real number and
Ay = —p+y/P?—4q
17.8 - 2
( ) \ = p—/p%—4q

2
are distinct real roots of (17.6). Thus,

Az
o= et
(179) moZ Al
will both be solutions of (17.3). Noting that
Wy, y2) = v1¥5 —Yiy2
— AieAJer)\,a: _ )\+6A+z6)\,z
(17.10) — ()\7 _ )\+) et +Ar)z

3(p2—4q€_§x

a

is non-zero, we conclude that if p? — 4¢ # 0, then the roots (17.8) furnish two linearly independent solutions
of (17.3) and so the general solution is given by

(17.11) y(x) = c1eM® + coe"

Case (ii): p* —4q=0

If p? — 4¢q = 0, however, this construction only gives us one distinct solution; because in this case Ay = A_.
To find a second fundamental solution we must use the method of Reduction of Order.

So suppose y; (z) = e~ %% is the solution corresponding to the root

N PEVP —4g  —pE0_ —p
2

2 2

of
M4+pr—qg=0, p*—4g=0.
Then the Reduction of Order formula gives us a second linearly independent solution
1

) =) [ e [ I p(t)dt} s

gives us a second linearly independent solution. Plugging in y; (x) = e~ %% and p(t) = p, yields

T 1 S
yolz) = e 5" 5 €XP [/ pdt} ds
(e7%)
_ Lz Tl [7 ]d
= e —s Xp [—ps] ds
= e 27 ePie™P3ds

= ay(z)
In summary, for the case when p? — 4¢ = 0, we only have one root of the characterisitic equation, and
so we get only one distinct solution y; (x) of the original differential equation by solving the characteristic
equation for A. To get a second linearly solution we must use the Reduction of Order formula; however, the
result will always be the same: the second linearly independent solution will always be = times
the solution y, (z) = e~ %% . Thus, the general solution in this case will be

y(z) = cre 2% 4 come 2% | if p? —4q = 0.
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We now turn to the third and last possibility.
Case (iii): p* —4q <0

In this case
(17.12) 2 — 4q

will be undefined unless we introduce complex numbers. But when we set

(17.13) V-l=i

we have

(17.14) VP2 —4q =/ (-1)(4g — p?) = V=1\/4q — p> = i\/4q — p?

The square root on the right hand side is well-defined since 4q — p? is a positive number. Thus,

_ 1 _ 2
(17.15) A= PEWVATE g

2
where
__b _ Viq—p®
(17.16) a=-2 . =V 7
will be a complex solution of (17.6) and
(17.17) y(z) = c12T T 4 ¢year—ife

would be a solution of (17.3) if we could make sense out the notion of an exponential function with a
complex argument.

Thus, we must address the problem of ascribing some meaning to

(17.18) eaatibe

as a function of x. To ascribe some sense to this expression we considered the Taylor series expansion of e*
T 1.2 1.3 ..

(17.19) e’ = l+ad 57 +52°+

= YiZout’

Now although we do not yet understand what e®®*%% means, we can nevertheless substitute o + i3 for
2 on the right hand side of (17.19), and get a well defined series with values in the complex numbers. One
can show that this series converges for all «, 8 and x. We thus take

n

azr+i : 1 . i
(17.20) e tif — Jim Z E(aw + i0z)
i=0
which agrees with (17.19) when 8 = 0.

One can also show that

(17.21) eortifr _ jaxifr
Thus, when p? — 4¢ = 0, we have two complex valued solutions to (17.3)
(17.22) y1(z) = 2P and  yo(x) = e*Te"iBT
where

_ Ta — 2
(17.23) o= TP 7 8= q2 p

A general solution of (17.3) would then be
(17.24) y(x) — cleawelﬂw + CQeaweiﬂx.
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However, this is rarely the form in which one wants a solution of (17.3). One would prefer solutions that
are real-valued functions of z rather that complex-valued functions of z. But these can be had as well,
since if z = x + iy is a complex number, then

Re(z) = (242 ==z
(1729 s I e
are both real numbers. Applying the Superposition Principle, it is easy to see that if
(17.26) y(x) = e%etPe
and
(17.27) §(x) = e T

are two complex-valued solutions of (17.3), then

1 ~ on eiﬁz +efiﬁa:

(1728 (o) = 5 () + () = e (5 )
and

(17.29) (@) = o (@) - 7(w) = o7 (S

' Yilt) = 5 W) i) = 2i

are both real-valued solutions of (17.3).
Let us now compute the series expansion of

(17.30) c *e

2
and
e'i;z _ e—ix

17.31

(17.31) 2

(17.32)

1 (e +e7i) = 3 (1 + (ix) 4+ 5 (ix)* + g (i) +--+)

+3 (1 + (—iz) + & (—ix)* + % (—iz)3 +-- )

|
—~

1—La?+ gat+-)

The expression on the right hand side is readily identified as the Taylor series expansion of cos(x). We thus
conclude

ix —ix
(17.33) cos(z) = < —1—26
Similarly, one can show that

ix _ ,—ix
(17.34) sin(z) = < 2;

On the other hand, if one adds (17.33) to i times (17.34) one gets

eia: + efiz eiz _ efiz eiz + efiz + eia: _ efiz

(17.35) cos(z) + isin(z) = 5 +i % 5 =e
or
(17.36) e = cos(x) 4 isin(x)

Thus, the real part of e is cos(z), while the pure imaginary part of e is sin(z).
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We now have a means of interpreting the function

(17.37) ertife
in terms of elementary functions (rather than as a power series); namely,
(17.38) ertifr — paw B — o (cog(Br) + isin(Bx)) .
Thus,

Re [e@™+iB2] = e cos(fz)
(17.39) Im [e@r+ibr] = e sin(Br)

I now want to show how (17.33) and (17.34) allow us to write down the general solution of a differential
equation of the form

(17.40) V' +py +qu=0 , p*—4¢<0

as a linear combination of real-valued functions.

Now when p? — 4¢ < 0, then

—p i dg — 2
(17.41) Ay = % —a+if

are the (complex) roots of the characteristic equation

(17.42) MN4+ph+g=0
corresponding to (17.40) and

(17.43) yi(z) = e2rE0

are two (complex-valued) solutions of (17.40). But since (17.40) is linear, since y4 and y_ are solutions so
are

n(r) = % (y+(x) +y-(x))

5 eax+lﬁz+eaz71ﬁaz)
(17.44) _ gaw (€02 efmz>
2

e** cos(fBx)
and

ya(z) = % (y+(@) — y—(x))

5 (eDZIJriﬁx o eazfiﬁz)

ax [P —ei8®
€ ( 2i

e sin(fx)

(17.45)

Note that y; and y, are both real-valued functions.

We conclude that if the characteristic equation corresponding to
(17.46) V' +py +qu=0
has two complex roots

(17.47) A=a+if

then the general solution is

(17.48) | y(x) = 1% cos(fr) + c2e™sin(Bx) . |
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ExaMPLE 17.1. The differential equation

(17.49) Yy =2y — 3y

has as its characteristic equation

(17.50) M2 -3=0

The roots of the characteristic equation are given by

(17.51) A o= EER
= 3,-1

These are distinct real roots, so the general solution is

(17.52) y(x) = 13" + coe™®

EXAMPLE 17.2. The differential equation

(17.53) Yy + 4y +4y =0

has

(17.54) M4 +4=0

as its characteristic equation. The roots of the characteristic equation are given by

N = —4E/I6-16

(17.55) _ o 2

Thus we have a double root and the general solution is

(17.56) y(x) = cre” " + coze™ >

ExaMPLE 17.3. The differential equation

(17.57) v'+y +y=0

has

(17.58) MEA+1=0

as its characteristic equation. The roots of the characteristic equation are
P EV

(17.59) _ _% 32”39

and so the general solution is

(17.60) y(a) = cre” 3% cos <§x> + coe” 3" sin (?z)



