LECTURE 15

Reduction of Order

Recall that the general solution of a second order homogeneous linear differential equation

(15.1)
$$L[y] = y'' + p(x)y' + q(x)y = 0$$

is given by

$$(15.2) y(x) = c_1 y_1(x) + c_2 y_2(x)$$

where y_1 and y_2 are any two solutions such that

(15.3)
$$W[y_1, y_2](x) = y_1(x)y_2'(x) - y_1'(x)y_2(x) \neq 0 .$$

In this section we shall assume that we have already found one solution y_1 of (15.1) and that we are seeking to find another solution y_2 so that we can write down the general solution as in (15.2).

So suppose we have one non-trivial solution $y_1(x)$ of (15.1) and suppose there is another solution of the form

$$(15.4) y_2(x) = v(x)y_1(x) .$$

Then

(15.5)
$$W[y_1, y_2] = y_1 y_2' - y_1' y_2 = y_1 (v'y_1 + vy_1') - y_1' (vy_1) = (y_1)^2 v' \neq 0$$

unless v' = 0. Thus, any solution we construct by multiplying our given solution $y_1(x)$ by a non-constant function v(x) will give us another linearly independent solution.

The question we now wish to address is: how does one find an appropriate function v(x)?

Certainly, we want to choose v(x) so that $y_2(x) = v(x)y_1(x)$ satisfies (15.1). So let us insert $y(x) = v(x)y_1(x)$ into (15.1):

1

(15.6)
$$0 = \frac{d^2}{dx^2} (vy_1) + p(x) \frac{d}{dx} (vy_1) + q(vy_1) \\ = v''y_1 + 2v'y_1' + vy_1'' + p(x)v'y_1 + p(x)vy_1' + qvy_1 \\ = v(y_1'' + p(x)y_1' + q(x)y_1) + v''y_1 + (2y_1' + p(x)y_1)v'$$

The first term vanishes since y_1 is a solution of (15.1), so v(x) must satisfy

$$(15.7) 0 = y_1 v'' + (2y_1' + p(x)y_1) v'$$

or

(15.8)
$$v'' + \left(p(x) + \frac{2y_1'}{y_1}\right)v' = 0 \quad .$$

Now set

$$(15.9) u(x) = v'(x) .$$

Then we have

(15.10)
$$u' + \left(p(x) + \frac{2y_1'(x)}{y_1(x)}\right)u = 0 .$$

This is a first order linear differential equation which we know how to solve. Its general solution is

(15.11)
$$u(x) = C \exp \left[-\int_{-\infty}^{x} \left(p(t) + \frac{2y_{1}'(t)}{y_{1}(t)} \right) dt \right] \\ = C \exp \left[-\int_{-\infty}^{x} \left(p(t) \right) dt - 2 \int_{-\infty}^{x} \frac{y_{1}'(t)}{y_{1}(t)} dt \right]$$

Now note that

(15.12)
$$\frac{d}{dt} \ln [y_1(t)] = \frac{y_1'(t)}{y_1(t)} ,$$

so

(15.13)
$$\exp\left[-2\int^{x} \frac{y_{1}'(t)}{y_{1}(t)} dy\right] = \exp\left[-2\int^{x} \frac{d}{dt} \left(\ln\left[y_{1}(t)\right]\right) dt\right] \\ = \exp\left[-2\ln\left[y_{1}(x)\right]\right] \\ = \exp\left[\ln\left[\left(y_{1}(x)\right)^{-2}\right]\right] \\ = \frac{1}{(y_{1}(x))^{2}}.$$

Thus, (15.11) can be written as

(15.14)
$$u(x) = \frac{C}{(y_1(x))^2} \exp\left[-\int^x p(t)dt\right] .$$

Now recall from (15.9) that u(x) is the derivative of the factor v(x) which we originally sought out to find. So

(15.15)
$$v(x) = \int_{-\infty}^{x} u(t) dt + D \\ = \int_{-\infty}^{x} \left[\frac{C}{(y_1(t))^2} \exp\left[-\int_{-\infty}^{t} p(t') dt' \right] \right] + D$$

It is not too difficult to convince oneself that it is not really necessary to carry along the constants of integration C and D. For the constant D can be absorbed into the constant c_1 of the general solution $y(x) = c_1y_1(x) + c_2y_2(x)$, while the factor C can be absorbed into the constant c_2 . Thus, without loss of generality, we can take C = 1 and D = 0. So given one solution $y_1(x)$ of (15.1), a second solution $y_2(x)$ of (15.1) can be formed by computing

$$(15.16) v(x) = \int_{-\infty}^{x} u(t) dt$$

where

(15.17)
$$u(x) = \frac{1}{(u_1(x))^2} \exp\left[-\int^x p(t)dt\right]$$

and then setting

$$(15.18) y_2(x) = v(x)y_1(x)$$

The general solution of (15.1) is then

$$(15.19) y(x) = c_1 y_1(x) + c_2 v(x) y_1(x) .$$

This technique for constructing the general solution from single solution of a second order linear homogeneneous differential equation is called **reduction of order**.

For those of you who like nice tidy formulae we can write

(15.20)
$$y_2(x) = y_1(x) \int_{-\infty}^{x} \frac{1}{(y_1(s))^2} \exp\left[-\int_{-\infty}^{s} p(t)dt\right] ds$$

for the second solution.

Example 15.1.

$$(15.21) y_1(x) = e^{-x}$$

is one solution of

$$(15.22) y'' + 2y' + y = 0 .$$

Find another linearly independent solution.

Well, p(x) = 2, so

(15.23)
$$u(x) = \frac{C}{(y_1(x))^2} \exp\left[-\int^x p(t)dt\right]$$
$$= \frac{C}{e^{-2x}} \exp\left[-2x\right]$$
$$= Ce^{2x}e^{-2x}$$
$$= C$$

So

(15.24)
$$v(x) = \int_{-\infty}^{x} u(t) dt = \int_{-\infty}^{x} C dt = Cx.$$

Thus,

(15.25)
$$y_2(x) = v(x)y_1(x) = Cxe^{-x} .$$

Example 15.2.

$$(15.26) y_1(x) = x$$

is a solution of

$$(15.27) x^2y'' + 2xy' - 2y = 0 .$$

Use reduction of order to find the general solution.

Well, we first put the differential equation in standard form:

$$(15.28) y'' + \frac{2}{x}y' - \frac{2}{x^2}y = 0 .$$

Thus,

(15.29)
$$p(x) = \frac{2}{x} \quad , \quad q(x) = \frac{-2}{x^2} \quad .$$

We first compute u(x).

(15.30)
$$u(x) = \frac{C}{(y_1(x))^2} \exp\left[-\int^x p(t)dt\right] \\ = \frac{C}{x^2} \exp\left[\int^x -\frac{2}{t}dt\right] \\ = \frac{C}{x^2} \exp\left[-2\ln[x]\right] \\ = \frac{C}{x^2}x^{-2} \\ = Cx^{-4} .$$

So

(15.31)
$$v(x) = \int_{-x}^{x} u(t)dt$$
$$= \int_{-x}^{x} Ct^{-4}dt$$
$$= -\frac{C}{2}x^{-3}$$

and

(15.32)
$$y_2(x) = v(x)y_1(x) = -\frac{C}{3x^3}x = C'x^{-2} .$$

The general solution of the original differential equation is thus

(15.33)
$$y(x) = c_1 y_1(x) + c_2 y_2(x) = c_1 x + c_2 x^{-2} .$$