
LECTURE 4

First Order Differential Equations and the Fundamental Theorem
of Calculus

We’ll now begin to develop techniques for solving first order differential equations. The general problem is
this: given a first order differential equation

(1)
dy

dx
= F (x, y)

Find a function φ (x) such that φ is substituted for y on both sides of (1) the resulting equation is a
mathematical identity. Unfortunately, we not solve equation (1) in the generality stated. Rather we will
have to proceed special case by special case. In the end, however, we’ll end up with a substantial repetoire
of techniques that will enable us to solve all but the most pathological differential equations of the form (1).

1. The Fundamental Theorem of Calculus

The simplest special case of equation (1) is when the right hand side is a function of x alone. So let us
consider differential equations of the form

(2)
dy

dx
= f (x)

Solving this equation is equivalent to answering the question: what function y (x) has the function f (x) as
its derivative? Addressing this question was actually a large part of Calculus I and II. In the contex of
Calculus I and II, it was phrased what is the anti-derivative of f (x)? The answer for us will be essentially
the same as the answer in Calculus: we find solutions to (1) (i.e. find the anti-derivative of f (x)) by
integrating both sides. However, there are some additional nuances and details to be filled in.

This I shall do below.To write down the solution of this equation, it suffices to simply apply the Fundamental
Theorem of Calculus. Now roughly speaking the Fundamental Theorem of Calculus says that integrals and
derivatives are inverses of each other. Here is a more precise statement

Theorem 4.1 (Fundamental Theorem of Calculus). Let f be a continuous function on [a, b].

I. For x ∈ [a, b], let

(3) Fa (x) =

∫ x

a

f (x) dx ≡ lim
N→∞

N∑
i=1

f (xi) ∆x , xi = xi + i∆x , ∆x =
x− a
N

.

Then F (x) is continuous and differentiable on (a, b) and

dFa

dx
(x) ≡ lim

ε→0

Fa (x+ ε)− Fa (x)

ε
= f (x)

II. If F (x) is any anti-derivative of f (x) (i.e., any differentiable function whose derivative is equal
to f (x)) , then

(4)

∫ x

a

f (x) dx = F (x)− F (a)
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1.1. Digression: Definite Integrals, Indefinite Integrals, and Constants of Integration.
What makes the Fundamental Theorem so fundamental is that it connects two very different mathematical
limit constructions. Unfortunately, several centuries of mathematics has managed to confuse the two math-
ematical constructs by employing similiar notations. A definite integral, on the other hand, is an expression
of the form ∫ b

a

f (x) dx

where one is to integrate a function f (x) along a specific interval [a, b]; this will be some number (obtained
by taking the limit of a sequence of Riemann sums). Distinct from this is the notion of an indefinite integral∫

f (x) dx

where the result is to be a particular function; the anti-derivative of f (x) (a function whose derivative is
f (x)). If we set

F (x) ≡
∫
f (x) dx (meaning F (x) is an anti-derivative of f (x))

then second part of the Fundamental Tehorem of Calculus says
∫ b

a
f (x) dx can be computed by taking the

difference in the values of F (x) at x = b and x = a.∫ b

a

f (x) dx = F (b)− F (a)

(as opposed to computing it via the limit definition on the right hand side of (3)).

The second part of the Fundamental Theorem tells us

Fa (x) =

∫ x

a

f (x) dx = F (x)− F (a)

will satisfy

(5)
dy

dx
= f (x) .

However, it is easy to construct other solutions of (5). Let C be any constant and set

(6) ỹ (x) = Fa (x) + C.

Then
dỹ

dx
=

d

dx
(Fa (x) + C) =

dFa

dx
+
dC

dx
= f (x) + 0 = f (x)

So ỹ will also satisfy (5). On the other hand,

ỹ (x) = Fa (x) + C = F (x)− F (a) + C = F (x) + C ′

where
C ′ = C − F (a) = some constant.

Let me summarize this discussion by stating a corollary to Fundamental Theorem of Calculus suitable for
the problem of solving differential equations like (5).

Corollary 4.2. Any function of the form

(7) y (x) =

∫
f (x) dx+ C (where C is a constant)

will provide a solution of
dy

dx
= f (x) .

In fact, not only can we construct lots of solutions by adjusing the constant C on the right hand side of
(7). We shall see later (Lecture 8) that every solution of (5) can be expressed in the form (7). We might
as well state this latter result as a theorem (to be proved later):
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Theorem 4.3. The general solution to
dy

dx
= f (x)

is given by

y (x) =

∫
f (x) dx+ C

where C is some constant.

By the way, in stating the theorem I tacitly introduced the notion of a general solution. This just means
a formula that enables us to compute all the solutions. The constant C on the right hand side of (3) is
often referred to as either an artbitary constant or as a constant of integration. Fixing C to be a particular
number yields a particular solution, and leaving it arbitrary furnishes the general solution.

2. Examples

Example 4.4. Solve
dy

dx
= x+ cos (x)

• By the corollary

y (x) =

∫
(x+ cos (x)) dx+ C

=
1

2
x2 − sin (x) + C

Example 4.5. Solve
dy

dx
= x sin (x)

• (The main point of this example is to remind you of integration by parts). By the corollary to the
Fundamental Theorem, we have

y (x) =

∫
x sin (x) dx+ C

The Integration by Parts formula says∫
udv = uv −

∫
vdu

If we take

u = x ⇒ du = dx

dv = sin (x) dx ⇒ v =

∫
dv =

∫
sin (x) dx = − cos (x)

So∫
x sin (x) dx = (x (− cos (x)))−

∫
(− cos (x)) dx = −x cos (x) +

∫
cos (x) = −x cos (x) + sin (x)

Thus,
y (x) = −x cos (x) + sin (x) + C

will be the solution to the differential equation.


