LECTURE 3

Graphical Interpretation of First Order Differential Equations

Consider the graph of a solution z(t) of the differential equation

dx

(3.1) = = F@(®).)

x(t)

Now 2Z(7) is precisely the slope of the graph of z(t) at the point (7,z(r)). Thus, since z(t) is to be a

solution of the differential equation (3.1), we can conclude the that slope of the graph of z(t) at the point
(r,z(7)) is exactly F (x(7), 7).

Now let’s remove the graph of z(¢) from the picture, and look instead a grid of points in the tz-plane:

=
E ] - - -
- - - -
- » - -
- » - » -
' : t




3. GRAPHICAL INTERPRETATION OF FIRST ORDER DIFFERENTIAL EQUATIONS 8

We still know that the slope of the solution that passes thru the point (¢,x) must be given by F(x,t)..
Therefore, to get a picture of the possible solutions of the differential equation (3.1) we can pick a bunch of
sample points (t;, ;) forming a nice rectangular grid in the tz-plane, calculate the value of F'(z,t) at each
of these points, and then draw short lines with slopes F (x;, ;) passing through the points (t;x;)
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and then finally we can try to draw curves that pass thru all the points (¢;,z;) in such a way that their
tangent lines are always parallel to the lines eminating from each of the points (t;,z;) .

If you do this for a large number of points you can get a fairly accurate picture of a large number of solutions
of your differential equation.
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The graph above corresponds to the differential equation
dx .
i tsin(z).

It was produced by Maple via the following commands:

(1) with(DEtools);
(2) dfieldplot(diff(x(t),t) = t*sin(x),[x],t=0..2,x=0..2);

0.1. Interpretation of Graphical Solutions. What’s nice about the graphical method described
above is that it gives a fairly accurate view of all solutions (in a given region of the ta-plane) of a first order
differential equation. Of course accuracy here does not mean numerical accuracy. What I mean to say is
that the picture itself is enough to provide accurate knowledge about the solutions.

ExAMPLE 3.1. Sketch the direction fields associated with the following differential equation
t=uz(x—1)
Below is the output of the Maple command “dfieldplot(diff(x(t),t) = x*(2*x -1),[x],t=0..2,x=-2..2);”:

ExAMPLE 3.2. Now suppose this differential equation describes the position of a particle as a function of
time. Can you make any predictions about the trajectories of particles as t — 0o?

Let’s look at the direction field plot. Note that at all points above the line x = 1, the direction field vectors
have positive slope. This means the the solutions which have at least one point above the line x = 1 are
always increasing (their tangent vectors always have positive slope). So any solution z(t) that starts off
above the line x = 1 will tend to infinity as ¢ goes to infinity.

What about solutions that pass through the line y = 17 Well, the direction field vectors are identically zero
along the line = 1. So the slope of any solution z(t) passing through the line y = 1 is constant and equal
to zero. Therefore, once a solution reaches the line x = 1, it stays there.
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FIGURE 1

At this point, it might be helpful to look specifically at the sign of the function F(x,t) = a(xz — 1) that
defines the differential equation in the various regions of the xt¢-plane:

Region sign(42) = sign(F(z,t))

z>1 positive
r=1 Z€ero
<<l negative
z=0 Z€ero
<0 positive

Thus, if a solution starts off in the region x > 1 then its slope is always positive, and so such a solution
would tend to co as t — oo.

If a solution starts off with z = 1, then its slope is initially zero, and so the function is initially constant.
But then it can never leave the line 2 = 1. And so such a solution will just be the constant solution z(t) = 1

If a solution starts off with 0 < = < 1, then its slope is initially negative, so the function is initially
decreasing. However, at x = 0, the slope is zero again, so the solution cannot decrease any further. Such
solutions will thus asymptotically approach the line x = 0 ast t — oc.

If a solution starts off with z = 0, then the slope is initially zero and remains at zero. Thus, such a solution
will always be the constant solution z(¢) = 0

If a solution starts off with & < 0, then its slope will be initially positive. However, such a solution can not
increase past the value x = 0 since the slope must be zero along the line z = 0. Therefore, such a solution
will asymptotically approach the line z =0 as t — oo.



