LECTURE 3

Graphical Interpretation of First Order Differential Equations

Consider the graph of a solution $x(t)$ of the differential equation

$$\frac{dx}{dt} = F(x(t), t)$$

Now $\frac{dx}{dt}(\tau)$ is precisely the slope of the graph of $x(t)$ at the point $(\tau, x(\tau))$. Thus, since $x(t)$ is to be a solution of the differential equation (3.1), we can conclude that the slope of the graph of $x(t)$ at the point $(\tau, x(\tau))$ is exactly $F(x(\tau), \tau)$.

Now let’s remove the graph of $x(t)$ from the picture, and look instead a grid of points in the tx-plane:
We still know that the slope of the solution that passes thru the point \((t, x)\) must be given by \(F(x, t)\). Therefore, to get a picture of the possible solutions of the differential equation (3.1) we can pick a bunch of sample points \((t_i, x_j)\) forming a nice rectangular grid in the \(tx\)-plane, calculate the value of \(F(x, t)\) at each of these points, and then draw short lines with slopes \(F(x_j, t_i)\) passing through the points \((t_i, x_j)\).

![Graphical interpretation of first order differential equations](image)

and then finally we can try to draw curves that pass thru all the points \((t_i, x_j)\) in such a way that their tangent lines are always parallel to the lines eminating from each of the points \((t_i, x_j)\).

![Graphical interpretation of first order differential equations](image)

If you do this for a large number of points you can get a fairly accurate picture of a large number of solutions of your differential equation.
The graph above corresponds to the differential equation

\[\frac{dx}{dt} = t \sin(x). \]

It was produced by Maple via the following commands:

1. with(DEtools);
2. dfieldplot(diff(x(t),t) = t*sin(x),[x],t=0..2,x=0..2);

0.1. Interpretation of Graphical Solutions. What’s nice about the graphical method described above is that it gives a fairly accurate view of all solutions (in a given region of the tx-plane) of a first order differential equation. Of course accuracy here does not mean numerical accuracy. What I mean to say is that the picture itself is enough to provide accurate knowledge about the solutions.

Example 3.1. Sketch the direction fields associated with the following differential equation

\[\dot{x} = x(x - 1) \]

Below is the output of the Maple command “dfieldplot(diff(x(t),t) = x*(2*x -1),[x],t=0..2,x=-2..2);”:

Example 3.2. Now suppose this differential equation describes the position of a particle as a function of time. Can you make any predictions about the trajectories of particles as \(t \to \infty \)?

Let’s look at the direction field plot. Note that at all points above the line \(x = 1 \), the direction field vectors have positive slope. This means the solutions which have at least one point above the line \(x = 1 \) are always increasing (their tangent vectors always have positive slope). So any solution \(x(t) \) that starts off above the line \(x = 1 \) will tend to infinity as \(t \) goes to infinity.

What about solutions that pass through the line \(y = 1 \)? Well, the direction field vectors are identically zero along the line \(x = 1 \). So the slope of any solution \(x(t) \) passing through the line \(y = 1 \) is constant and equal to zero. Therefore, once a solution reaches the line \(x = 1 \), it stays there.
At this point, it might be helpful to look specifically at the sign of the function $F(x,t) = x(x-1)$ that defines the differential equation in the various regions of the xt-plane:

<table>
<thead>
<tr>
<th>Region</th>
<th>$\text{sign} \left(\frac{dx}{dt} \right)$</th>
<th>$\text{sign} (F(x,t))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x > 1$</td>
<td>positive</td>
<td>positive</td>
</tr>
<tr>
<td>$x = 1$</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>$0 < x < 1$</td>
<td>negative</td>
<td>negative</td>
</tr>
<tr>
<td>$x = 0$</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>$x < 0$</td>
<td>positive</td>
<td>positive</td>
</tr>
</tbody>
</table>

Thus, if a solution starts off in the region $x > 1$ then its slope is always positive, and so such a solution would tend to ∞ as $t \to \infty$.

If a solution starts off with $x = 1$, then its slope is initially zero, and so the function is initially constant. But then it can never leave the line $x = 1$. And so such a solution will just be the constant solution $x(t) = 1$

If a solution starts off with $0 < x < 1$, then its slope is initially negative, so the function is initially decreasing. However, at $x = 0$, the slope is zero again, so the solution cannot decrease any further. Such solutions will thus asymptotically approach the line $x = 0$ ast $t \to \infty$.

If a solution starts off with $x = 0$, then the slope is initially zero and remains at zero. Thus, such a solution will always be the constant solution $x(t) = 0$

If a solution starts off with $x < 0$, then its slope will be initially positive. However, such a solution can not increase past the value $x = 0$ since the slope must be zero along the line $x = 0$. Therefore, such a solution will asymptotically approach the line $x = 0$ as $t \to \infty$.