Math 2233 Homework Set 7

1. Find the first four terms of the Taylor expansion about x = 0 of the solution of

$$\begin{array}{rcl} y' &=& y'\\ y(0) &=& 1 \end{array}$$

2. Find the first four terms of the Taylor expansion about x = 1 of the solution of

$$\begin{array}{rcl} y' &=& x^2 y \\ y(1) &=& 1 \end{array}$$

3. Transform each of the following expressions into a single power series.

(a)
$$\sum_{n=1}^{\infty} (n+1)(x-1)^{n-1} + \sum_{n=0}^{\infty} n(x-1)^n$$

(b)
$$\sum_{n=0}^{\infty} (n+1)a_{n+2}x^{n+1} + \sum_{n=0}^{\infty} na_n x^{n-1}$$

(c)
$$(x-1)\sum_{n=0}^{\infty} na_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^n$$

(d)
$$x\sum_{n=0}^{\infty} na_n (x-1)^{n-1} + \sum_{n=0}^{\infty} a_n (x-1)^n$$

(e)
$$x^2\sum_{n=0}^{\infty} n(n-1)a_n (x-1)^{n-2}$$

4. Find the recursion relations for the power series solutions $y(x) = \sum_{n=0}^{\infty} a_n (x - x_o)^n$ of the following differential equations

(a) $y'' - xy' - y = 0, x_o = 0$ (b) $y'' - xy' - y = 0, x_o = 1$ (c) $(1 - x)y'' + y = 0, x_o = 0$ (d) $y'' + xy' + 2y = 0, x_o = 0$ (e) $(1 + x^2)y'' - 4xy' + 6y = 0, x_o = 0$

5. Find power series expressions for the general solutions of the following differential equations. (You may utilize recursion relations found in Problem 2.)

(a)
$$y'' - xy' - y = 0, x_o = 0$$

(b) $y'' - xy' - y = 0, x_o = 1$

6. Find power series expressions for the solutions to the following initial value problems. (You may utilize recursion relations found in Problem 2.)

(a) (1-x)y'' + y = 0, y(0) = 2, y'(0) = 1(b) y'' - xy' - y = 0, y(1) = 1, y'(1) = 2