
Math 2233 SOLUTION TO FINAL EXAM
10:00 – 11:50 am , May 4, 2011

1. (10 pts) Use the Euler (numerical) method with ∆x = 0.1 to estimate y(1.2), where y(x) is the solution
of

y′ = x(1 + y) , y(1) = 0 .

•
x0 = 1

y0 = 0

x1 = x0 + ∆x = 1.1

y1 = y0 + x0 (1 + y0) ∆x = 0 + (1) (1 + 0) (0.1) = 0.1

x2 = x1 + ∆x = 1.2

y2 = y1 + x1 (1 + y1) ∆x = 0.1 + (1.1) (1 + 0.1) (0.1) = 0.121

y (1.2) ≈ 0.221

2. (15 pts) Find general solution of xy′ − 2y = x.

• This is a first order linear equation equivalent to the following ODE in standard form

y′ − 2

x
y = 1 ⇒ p (x) = − 2

x
, g (x) = 1

We thus have

µ (x) = exp

(∫
p (x) dx

)
= exp

(∫ (
− 2

x

)
dx

)
= exp (−2 ln |x|) = x−2

and so

y (x) =
1

µ (x)

∫
µ (x) g (x) dx+

C

µ (x)
= x2

∫
x−2 (1) dx+ Cx2

= x2
(
− 1

x

)
+ Cx2

= −x+ Cx2

• 3. (15 pts) Show that the following equation is exact and find an implicit solution.

2x+
1

x
+

1

y

dy

dx
= 0

We have

M = 2x+
1

x
⇒ ∂M

∂y
= 0

N =
1

y
⇒ ∂N

∂x
= 0

Since ∂M
∂y = ∂N

∂x the equation is exact (in fact, it’s separable). This means that the solutions of the

differential equations are also solutions of algebraic equations of the form Φ (x, y) = C, with Φ (x, y)
a function of x and y such that

Φ (x, y) =

∫
M (x, y) ∂x+ h1 (y) =

∫ (
2x+

1

x

)
∂x+ h1 (y) = x2 + ln |x|+ h1 (y)

Φ (x, y) =

∫
N (x, y) ∂y + h2 (x) =

∫
1

y
∂y + h2 (x) = ln |y|+ h2 (x)

Comparing these two expressions for Φ we see that we should take h1 (y) = 0 and h2 (x) = x2 so
that they agree. Thus, the implicit solution of the differential equation will be given by

x2 + ln |x|+ ln |y| = C

1
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4. (15 pts) Use the Method of Variation of Parameters to find the general solution of the following inho-
mogeneous differential equation.

y′′ − 3y′ + 2y = e−x .

• First we solve the corresponding homogeneous equation:

y′′ − 3y′ + 2y = 0

This is 2nd order linear with constant coefficients. Its characteristic equation is

0 = λ2 − 3λ+ 2 = (λ− 1) (λ− 2) ⇒ λ = 1, 2

So
y1 (x) = ex , y2 (x) = e2x

will be two independent solutions of y′′ − 3y′ + 2y = 0. We have

W [y1, y2] = (ex) (2eex)− (ex)
(
e2x
)

= e3x

and so

yp (x) = −y1
∫
y2 (x) g (x)

W [y1, y2]
dx+ y2

∫
y1 (x) g (x)

W [y1, y2]
dx

= −ex
∫
e2x (e−x)

e3x
dx+ e2x

∫
ex (e−x)

e3x
dx

= −e−x
∫
e−2xdx+ e2x

∫
e−3xdx

= −e−x
(
−1

2
e−2x

)
+ e2x

(
−1

3
e−3x

)
=

1

6
e−x

The general solution will thus be

y (x) =
1

6
e−x + c1e

x + c2e
2x

5. (10 pts) Find the general solution of the following differential equation.

y′′′′ − 4y′′ = 0 .

• This is a 4th order linear differential equation with constant coefficients. Its characteristic equation
is

0 = λ4 − 4λ2 =
(
λ2
) (
λ2 − 4

)
= (λ− 0)

2
(λ− 2) (λ+ 2)

which has three distinct roots: λ = 0 with multiplicity 2, λ = 2 with multiplity 1, and λ = −2 with
multiplicity 1. The general solution of the differential equation is thus

y (x) = c1e
0x + c2xe

0x + c3e
2x + c4e

−2x = c1 + c2x+ c3e
2x + c4e

−2x .

6. (10 pts) Reduce the following expression to a single power series expression.

x2
∞∑

n=0

n (n− 1) an (x− 1)
n−2

+

∞∑
n=0

an (x− 1)
n

• First we compute the Taylor expansion of f (x) = x2 about x0 = 1. We have

f (1) = x2
∣∣
x=1

= 1 , f ′ (1) = 2x|x=1 = 2 , f ′′ (1) = 2|x=1 = 2

with all higher derivatives vanishing. Thus

x2 = f (x) = f (1) + f ′ (1) (x− 1) +
f ′′ (1)

2!

(
x− 12

)
= 1 + 2 (x− 1) + (x− 1)

2
.

Consider now the first sum

x2
∞∑

n=0

n (n− 1) an (x− 1)
n−2

=
[
1 + 2 (x− 1) + (x− 1)

2
]
n (n− 1) an (x− 1)

n−2
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=

∞∑
n=0

n (n− 1) an (x− 1)
n−2

+

∞∑
n=0

2n (n− 1) an (x− 1)
n−1

+

∞∑
n=0

n (n− 1) an (x− 1)
n

=

∞∑
n=−2

(n+ 2) (n+ 1) an+2 (x− 1)
n

+

∞∑
n=−1

2 (n+ 1) (n) an+1 (x− 1)
n−1

+

∞∑
n=0

n (n− 1) an (x− 1)
n

= 0 + 0 +

∞∑
n=0

(n+ 2) (n+ 1) an+2 (x− 1)
n

+ 0 +

∞∑
n=0

2 (n+ 1) (n) an+1 (x− 1)
n−1

+

∞∑
n=0

2n (n− 1) an (x− 1)
n

=

∞∑
n=0

[(n+ 2) (n+ 1) an+2 + 2n (n+ 1) an+1 + n (n− 1) an] (x− 1)
n

The last expression on the right can now be readily added to the second sum in the original expression
to yield

∞∑
n=0

[(n+ 2) (n+ 1) an+2 + 2n (n+ 1) an+1 + n (n− 1) an + an] (x− 1)
n

•
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7.(15 pts) Find the recursion relations for a power series solution about xo = 1 for the following differential
equation.

xy′′ − 2y = 0

• We look for solutions of the form y (x) =
∑∞

n=0 an (x− 1)
n
. We have

xy′′ = x

∞∑
n=0

n (n− 1) an (x− 1)
n−2

= [1 + (x− 1)]

∞∑
n=0

n (n− 1) an (x− 1)
n−2

=

∞∑
n=0

n (n− a) an (x− 1)
n−2

+

∞∑
n=0

n (n− 1) an (x− 1)
n−1

= 0 + 0 +

∞∑
n=0

(n+ 2) (n+ 1) an+2 (x− 1)
n

+ 0 +

∞∑
n=0

(n+ 1) (n) an+1 (x− 1)
n

So when we plug the power series expression
∑∞

n=0 an (x− 1)
n

into the differential equation we get

0 =

∞∑
n=0

(n+ 2) (n+ 1) an+2 (x− 1)
n

+

∞∑
n=0

(n+ 1) (n) an+1 (x− 1)
n

+

∞∑
n=0

(−2) an (x− 1)
n

=

∞∑
n=0

[(n+ 2) (n+ 1) an+2 + n (n+ 1) an+1 − 2an] (x− 1)
n

This last equation requires

(n+ 2) (n+ 1) an+2 + n (n+ 1) an+1 − 2an = 0 , n = 0, 1, 2, 3, . . .

or

an+2 =
2an − n (n+ 1) an

(n+ 2) (n+ 1)
, n = 0, 1, 2, 3, . . .

8. (10 pts) Given that the recursion relations for y′′ − xy′ + y = 0 about xo = 0 are

an+2 =
(n− 1)an

(n+ 2)(n+ 1)
, n = 0, 1, 2, 3, . . .

Write down the first 4 terms of the power series solution satisfying y(0) = 1, y′(0) = 2 (i.e., find the solution
up to order x3.)

• If y (x) =
∑∞

n=0 anx
n, the initial conditions imply

a0 = y (0) = 1

a1 = y′ (0) = 2

The rest of the coefficients a2, a3,a4, . . . can now be determined by applying the recursion relations:

a2 = a0+2 =
(0− 1) a0

(0 + 2) (0 + 1)
=

(−1) (1)

(2) (1)
= −1

2

a3 = a1+2 =
(1− 1) a1

(1 + 2) (1 + 1)
= 0

That’s all the coefficients we need to get the solution up to order x3. We thus obtain

y (x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·

= 1 + 2x− 1

2
x2 +O

(
x4
)

9. Consider the following differential equation:

x2y′′ +
x

(x+ 1)(x+ 2)2
y′ +

1

x(x+ 1)
y = 0

(a) (10 pts) Identify and classify (as regular or irregular) the singular points of this differential equation.
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• For this differential equation we have

p (x) =
1

x (x+ 1) (x+ 2)
2 , q (x) =

1

x3 (x+ 1)

Looking at the denominators of p (x) and q (x) we see that we have singular points at x = 0, x = −1
and x = −2.

xx deg (p (x) , xs) deg (q (x) , xs) deg (p (x) , xs) ≤ 1 deg (q (x)) ≤ 2 type
0 1 3 true false irregular
−1 1 1 true true regular
−2 2 0 false true irregular

(b) (10 pts) For what range of x is a power series solution about xo = −4 guaranteed to converge? (Hint:
what is the radius of convergence of a power series solution about xo = −4?)

• The singular point that is closest to the expansion point is xs = −2. Since the distance between
xs = −2 and x0 = −4 is 2, we can conclude that the radius convergence of a power series solution
will be (at least) 2 and that solution will be valid for all x in the range

x ∈ (x0 −R, x0 +R) = (−4− 2,−4 + 2) = (−6,−2)
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10. (10 pts) Find the function f(x) whose Laplace transform is L[f ](s) =
2s+ 1

s2 + 2s+ 3
. (Hint: use the

Laplace transform tables on the last page.)

•
L[f ](s) =

2s+ 1

s2 + 2s+ 3
=

2s+ 1

s2 + 2s+ 1 + 2
=

2s+ 1

(s+ 1)
2

+
(√

2
)2

The denominator on the far right looks like that of either L
[
e−x sin

(√
2x
)]

or L
[
e−x cos

(√
2x
)]

.
We need to do a little more work to get the numerators to match up.

2s+ 1

(s+ 1)
2

+
(√

2
)2 =

2s+ 2− 1

(s+ 1)
2

+
(√

2
)2 =

2s+ 2

(s+ 1)
2

+
(√

2
)2 − 1

(s+ 1)
2

+
(√

2
)2

= 2
s+ 1

(s+ 1)
2

+
(√

2
)2 − 1√

2

√
2

(s+ 1)
2

+
(√

2
)2

= 2L
[
e−x cos

(√
2x
)]
− 1√

2
L
[
e−x sin

(√
2x
)]

= L
[
2e−x cos

(√
2x
)
− 1√

2
e−x sin

(√
2x
)]

So

f (x) = 2e−x cos
(√

2x
)
− 1√

2
e−x sin

(√
2x
)

11. (15 pts) Use the Laplace transform method to solve the following differential equation with initial
conditions

y′′ − 5y′ + 6 = 0

y (0) = 1

y′ (0) = 1

• Taking the Laplace transform of the differential equation yields

s2L [y]− sy (0)− y′ (0)− 5 (sL [y]− y (0)) + 6L [y] = 0

Applying the initial conditions and collecting terms proportional to L [y] we get(
s2 − 5 + 6

)
L [y]− s− 1 + 5 = 0

or

L [y] =
s− 4

s2 − 5 + 6
=

s− 4

(s− 2) (s− 3)

We now have to figure out what function has the right hand side as its Laplace transform. Since the
denominator factorizes we’ll rewrite the right hand side in terms of a partial fractions expansion.

s− 4

(s− 2) (s− 3)
=

A

s− 2
+

B

s− 3
⇒ s− 4 = A (s− 3) +B (s− 2)

We now use a couple convenient values of s to figure out the constants A and B.

s = 2 ⇒ 2− 4 = A (2− 3) +B (2− 2) ⇒ −2 = −A ⇒ A = 2

s = 3 ⇒ 3− 4 = A (3− 3) +B (3− 2) ⇒ −1 = B ⇒ B = −1

Thus we have

L [y] =
s− 4

(s− 2) (s− 3)
=

2

s− 2
− 1

s− 3
= 2L

[
e2x
]
− L

[
e3x
]

= L
[
2e2x − e3x

]
and so we can conclude that the solution of the original differential equation / boundary value
problem is

y (x) = 2e2x − e3x
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Table of Laplace Transforms

L [xn] =
n!

sn+1

L [eax] =
1

s− a
L [sin(ax)] =

a

s2 + a2

L [cos(ax)] =
s

s2 + a2

L [sinh (ax)] =
a

s2 − a2

L [cosh (ax)] =
s

s2 − a2

L [xneax] =
n!

(s− a)
n+1

L [eax sin (bx)] =
b

(s− a)
2

+ b2

L [eax cos (bx)] =
s− a

(s− a)
2

+ b2

L [eax sinh (bx)] =
b

(s− a)
2 − b2

L [eax cosh (bx)] =
s− a

(s− a)
2 − b2


