Math 2233 SOLUTION TO FINAL EXAM
10:00 — 11:50 am , May 4, 2011

1. (10 pts) Use the Euler (numerical) method with Az = 0.1 to estimate y(1.2), where y(z) is the solution
of

y=xz1+y) ,  y1)=0

xog=1

yo =10

r1=x0+Ax =11

y1 =yo +xo (1 +yo) Az =0+ (1)(140)(0.1) =0.1

To=x1 + Az =12

yo =11+ 21 (14 y1) Az = 0.1+ (1.1) (1 +0.1) (0.1) = 0.121
y(1.2) ~ 0.221

2. (15 pts) Find general solution of xy’ — 2y = x.

e This is a first order linear equation equivalent to the following ODE in standard form

2 2
r_Z :1 = = —— :1
y—y p () = 9@
We thus have

1 (z) = exp </p(:c) d:r) = exp (/ <i> dx) = exp (—2In|z]) = 272

and so
y(z) = ! /u(x)g(:p)dquL :xQ/:c*Q(l)dx+Cx2
p () 1 ()
1
=2 (—) + Cz?
x
= —x+ Cz?
e 3. (15 pts) Show that the following equation is exact and find an implicit solution.
1 1d
2+ — + 4 0
x ydx
We have
1 M
T dy
1 N
N = — = 87 =0
Y or

Since %—Aj = %—];’ the equation is exact (in fact, it’s separable). This means that the solutions of the

differential equations are also solutions of algebraic equations of the form ® (z,y) = C, with @ (z,y)
a function of x and y such that

<I>(;z:,y):/M(x,y)&z:—l—hl(y):/<2x—|—i)3x+h1(y):x2—|—ln|x|+h1(y)

¢($7y):/N(x,y)8y+h2(m):/$3y+h2(x):1n|y|+h2(x)

Comparing these two expressions for ® we see that we should take hy (y) = 0 and hs (z) = 2% so
that they agree. Thus, the implicit solution of the differential equation will be given by

2 +Inz|+Injy|=C



2

4. (15 pts) Use the Method of Variation of Parameters to find the general solution of the following inho-

mogeneous differential equation.
—T

y' =3y +2y=e

e First we solve the corresponding homogeneous equation:
—3y +2y=0
This is 2" order linear with constant coefficients. Its characteristic equation is
0=X-3\+2=-1)(A-2) = AX=12
So
y(x)=e" ., ya(z)=e*
will be two independent solutions of 3" — 3y’ + 2y = 0. We have
W [y1,y2] = (€7) (2°7) = (¢7) (¢¥7) = €™
and so

Y2 () g (7) yl(x)g(x)dx
W y1, yo] W ly1,y2]

2x —x x —x
—em/ie (36 )dx+62x/7e (g )dx
e>" e>*
= fefm/efzmdz:+e2‘”/673xdm
1 ) 1
_ _e—x (—26_23:) 4 621 (_36—330)

= le—ﬂf

6
The general solution will thus be

yp(x):_yl dx + y2

1
y(z) = 66_1 + 1" + coe?®

5. (10 pts) Find the general solution of the following differential equation.
//// 4@/// -0

e This is a 4" order linear differential equation with constant coefficients. Its characteristic equation
is
0= -4 =) (N -4)=1-0°A-2)(\+2)
which has three distinct roots: A = 0 with multiplicity 2, A = 2 with multiplity 1, and A = —2 with
multiplicity 1. The general solution of the differential equation is thus

—2z —2z

y(z) = 1% + cowel® + 3 + cqe = ¢1 + cox + 3% + cqe

6. (10 pts) Reduce the following expression to a single power series expression.

22 (n—1) anxfl +Zanz71

n=0

e First we compute the Taylor expansion of f (z) = x? about xo = 1. We have

fO=2*,,=1, fO)=2a_,=2, f1)=2,,=2

with all higher derivatives vanishing. Thus

2= f@)=fO+F W1+ Y

2!
Consider now the first sum

QZ (n—1)a, (x—1)"" {1—5—2(%—1)—1—@—1)2}n(n—l)an(:v—l)nf2

—1) =142 1)+ (1)



(n—1)a, (x—1)"

i (n—1)a, (x—1)" +22nn71)anx71 Z
n=0 n=0 n=0
Z n+2)(n+1)ane(z—1)" —|—Z n—i—l)(n)anﬂ(x—1)"71+Zn(n—1)an(x—l)n
n=—2 n=—1 n=0
:O+O+Z(n+2)(n+l)an+2(1¢f1)"+0+22(n+1)(n)an+1(x71 JrZZnn—l)an(x—l)
n=0 n=0

n=0
oo

Z [(n+2)(n+1)apnta+2n(n+1)apt1 +n(n—1)ay] (x —1)
n=0

The last expression on the right can now be readily added to the second sum in the original expression

to yield
Z n+2)(n+1apte+2n(n+ a1 +n(n—1)a, +a,] (. —1)
n=0
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7.(15 pts) Find the recursion relations for a power series solution about x, = 1 for the following differential
equation.
2y —2y =0

e We look for solutions of the form y (z) = Y7 ja, (x — 1)". We have

o =23 0= Dan o — 10" = L+ (o= D] 3o (n— Dan (o - 17
"0 n=0

= n(n—a)a, (x—1)"" Jrz (n—1)an (x—1)"""

n=0
=040+ > (n+2)(n+1)ant2(@—1)"+0+ Y (n+1)(n)ani (z—1)"
n=0 n=0

So when we plug the power series expression » .~ a, (z — 1)" into the differential equation we get

O=Z(n+2)(n+1)an+2(x—l)"+Z(n+1)( )an+1 (x —1) —I—Z Ya, (x —1)"
n=0 n=0

= Z [(n+2)(n+1)ani2+n(n+1)an — 2a,] (x —1)"
n=0

This last equation requires
m+2)(n+1)ant2+nn+1)apt1 —2a, =0 , n=0,1,2,3,...

or
2a, —n(n+1)ay

i = . n=0,1,2,3,...
2= T o) (nt 1) "

8. (10 pts) Given that the recursion relations for y” — zy’ + y = 0 about z, = 0 are
(n—1)ay

Oppo = —————

2T r2)(n+1)

Write down the first 4 terms of the power series solution satisfying y(0) = 1, ¢/(0) = 2 (i.e., find the solution
up to order z3.)

. n=0,1,23,...

o If y(z) = > " anx™, the initial conditions imply

ap=y(0)=1
a1 =y (0) =2
The rest of the coefficients as, as a4, ... can now be determined by applying the recursion relations:
a9 = Ag42 = (0_1)a0 :(_1)(1):—1
T +2)(0+1)  (2)(1) 2
(1 — 1) [25]

asa = a = - =
A (R NS
That’s all the coefficients we need to get the solution up to order z3. We thus obtain

y(x) = ap + a1x + apx® + azax® + - -

:1+2$—%1‘2+0(£L’4)

9. Consider the following differential equation:
2,1 € / 1
7y + + =0
Y Te+rn@+22! T i@+’

(a) (10 pts) Identify and classify (as regular or irregular) the singular points of this differential equation.




e For this differential equation we have

® ; () =
p(x) = , (@)= 40
z(z+1)(z+2)° 23 (v +1)
Looking at the denominators of p (x) and ¢ (z) we see that we have singular points at = 0, x = —1
and r = —2.
z, deg(p(z),zs) deg(q(z),zs) deg(p(z),zs) <1 deg(q(x)) <2  type
0 1 3 true false irregular
-1 1 1 true true regular
-2 2 0 false true irregular
(b) (10 pts) For what range of x is a power series solution about z, = —4 guaranteed to converge? (Hint:
what is the radius of convergence of a power series solution about z, = —47)
e The singular point that is closest to the expansion point is 3 = —2. Since the distance between
s = —2 and zg = —4 is 2, we can conclude that the radius convergence of a power series solution
will be (at least) 2 and that solution will be valid for all z in the range

S (%*R,CBOJFR):(*4*27*4+2):(*6,*2)



25+ 1

10. (10 pts) Find the function f(z) whose Laplace transform is L[f](s) = 212513

Laplace transform tables on the last page.)

(Hint: use the

2s+1 25+ 1 - 25 +1
$2+2s+3 24+2s+14+2 (s+1)2—|—(\/§)2

The denominator on the far right looks like that of either £ [e‘”” sin (\/ix)] or L [e_”” cos (\/ix)]
We need to do a little more work to get the numerators to match up.

L[f1(s) =

2s+1 _ 2s+2—1 _ 2s+2 7 1
s+1)%+ (V2" (+1°+ (27 (+1%+(V2)° (+1)7+(V2)
_9 s+1 1 V2

s+1°+ (V2 V2(s+1)7+ (VD)
=2L [e*"” cos (\/5:5)} — \%ﬁ [e*‘” sin (ﬁm)]

) [26—96 cos (V2r) - %e—m sin (ﬂx)}

f(x) =2e % cos (\/596) - %e‘l sin (\/536)

11. (15 pts) Use the Laplace transform method to solve the following differential equation with initial
conditions

So

Yy — 5y +6=0
y(0)=1
y(0)=1
e Taking the Laplace transform of the differential equation yields
s°L[y] = sy (0) =y (0) = 5 (sL[y] =y (0) + 6L[y] =0
Applying the initial conditions and collecting terms proportional to L [y] we get
(s°=5+6)L[y]—s—1+5=0

or

s—4 s—4
[_‘, = =
W= 556 " G963

We now have to figure out what function has the right hand side as its Laplace transform. Since the

denominator factorizes we’ll rewrite the right hand side in terms of a partial fractions expansion.

s—4 A n B
(s—2)(s—3) s—-2 s5—3

We now use a couple convenient values of s to figure out the constants A and B.
s=2 = 2-4=A(2-3)+B(2-2) = -2=-4 = A=2
s=3 = 3-4=A3-3)+BB3-2) = -1=B = B=-1

Thus we have

= s—-4=A(s—3)+B(s—2)

s—4 2 1
L — — _ =90 2x iy 3x :£22w_3z
] (s—2)(s—=3) s—2 s—3 [=*] [*] [2e €]
and so we can conclude that the solution of the original differential equation / boundary value
problem is

y(z) = 2e2* — 37



Table of Laplace Transforms

L") = %
Ll = - ig
L [sin(ax)] = W
L [cos(ax)] = o
£ [sinh (az)] = ﬁ
L [cosh (ax)] = = j e
n!
L[z"e] = (o a)"+1
o . b
L [e" sin (bx)] = m
s—a
L [e* cos (bx)] = m

wr __ b

L [e** sinh (bx)] = (5—a)y 1
L [e" cosh (bx)] = S
o cosh () = "



