
Math 2233

Homework Set 8

1. Determine the lower bound for the radius of convergence of series solutions about each given point xo.

(a) y
′′ + 4y′ + 6xy = 0 , x0 = 0
• Since the coefficient functions

p(x) = 4

q(x) = 6x

are perfectly analytic for all x, the differential equation thus possesses no singular points. Thus,
every power series solution

y(x) =
∞∑

n=0

an (x− xo)
n

will converges for all x and all x
o
. In particular, the radius of convergence for solutions about

xo = 0 will be infinite.
(b) (x− 1)y′′ + xy′ +6xy = 0 , x0 = 4

• Since the coefficient functions

p(x) =
x

x− 1

q(x) =
6x

x− 1

are both undefined for x = 1. Therefore, x = 1 is a singular point for this differential equation.
According to the theorem stated in lecture, if

y(x) =
∞∑

n=0

an (x− xo)
n

is a power series solution, then its radius of convergence will be at least as large as the distance
(in the complex plane) from the expansion point xo and the closest singularity of the functions
p(x) and q(x). In the case at hand, x0 = 4 and the closest (in fact, the only) singular point of the
coefficient functions p(x) and q(x) is x = 1. Since

‖4− 1‖ = 3

we can conclude that the radius of convergence of a series solution of the form

y(x) =
∞∑

n=0

an(x− 4)n

will be at least 3. In other words, the series solution will be valide for all x in the interval

|x− 4| < 3

or, equivalently, for all x such that

1 < x < 7

(c)
(
4 + x2

)
y′′ +4xy′ + y = 0 , x0 = 0

• In this case, the coefficient functions

p(x) =
4x

4 + x2

q(x) =
1

4 + x2

both have singularities when

4 + x2 = 0 ⇒ x = ±2i
1



2

These two singularies correspond to the points (0,±2) when we represent points in the complex
plane as points in the two dimenional plane. Under this representation of the complex plane,
the expansion point x0 = 0 corresponds to the point (0,0). Therefore the distances between the
expansion point and the singularity are

dist(2i,0) =
√
(0− 0)2 + (2− 0)2 = 2

dist(−2i,0) =

√
(0− 0)2 + (−2− 0)

2
= 2

Hence, the minimal distance is 2, and so the radius of convergence of a power series solution about
0 is at least 2.

(d)
(
1 + x2

)
y′′ +4xy′ + y = 0 , x0 = 2

• In this case the coefficient functions

p(x) =
4x

1 + x2

q(x) =
1

1 + x2

both have singularities when

1 + x
2 = 0 ⇒ x = ±i

These two singularies correspond to the points (0,±1) when we represent points in the complex
plane as points in the two dimenional plane. Under this representation of the complex plane,
the expansion point x0 = 2 corresponds to the point (2,0). Therefore the distances between the
expansion point and the singularity are

dist(i, 2) =
√
(0− 2)2 + (1− 0)2 =

√
5

dist(−i, 2) = (0− 2)2 + (−1− 0)
2
=
√
5

Hence, the distance between the expansion point and the closest singularity is
√
5 and so the

radius of convergence of a power series solution about the point xo = 2 will be at least
√
5.

2. Determine the singular points of the following differential equations and state whether they are regular
or irregular singular points.

(a) xy′′ + (1− x)y′ + xy = 0
• In this case, the coefficient functions are

p(x) =
1− x

x
q(x) = 1

Since p(x) is undefined for x = 0, 0 is a singular point. Since the limits

lim
x→0

(x− 0)p(x) = lim
x→0

(1− x) = 1

lim
x→0

(x− 0)2q(x) = lim
x→0

x3 = 0

both exist, x = 0 is a regular singular point. Alternatively, one could say that because the degree
of the singularity of the function p(x) at the point x = 0 is less than or equal to 1 and the degree
of the singularity of the function q(x) is less than or equal to 2, we have regular singular point at
x = 0.

(b) x2(1− x)2y′′ +2xy +4y = 0
• In this case, the coefficient functions are

p(x) =
2

x(1− x)2

q(x) =
4

x2(1− x)2
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The function p(x) evidently has a singularity of degree 1 at x = 0 and a singularity of degree 2
at x = 1. The function q(x) has singularities of degree 2 at x = 0 and x = 1. In order to be a
regularity singular point the degree of the singularity of p(x) must not exceed 1 and the degree of
the singularity of q(x) must not exceed 2. Therefore, x = 0 is a regular singular point and x = 1
is an irregular singular point..

(c) (1− x2)2y′′ + x(1− x)y′ + (1 + x)y = 0
• In this case,the coefficient functions are

p(x) =
x(1− x)

(1− x2)2
=

x(1− x)

(1− x)2(1 + x)2
=

x

(1− x)(1 + x)2

q(x) =
4

x2(1− x)2
=

1 + x

(1− x)2(1 + x)2
=

1

(1− x)2(1 + x)

The function p(x) evidently has a singularity of degree 1 at x = 1 and a singularity of degree 2
at x = −1. The function q(x) has a singularity of degree 1 at x = 1 and a singularity of degree
2 at x = −1. In order to be a regularity singular point the degree of the singularity of p(x) must
not exceed 1 and the degree of the singularity of q(x) must not exceed 2. Therefore, x = 1 is a
regular singular point and x = −1 is an irregular singular point.

3. Compute the Laplace transform of the following functions.

(a) f(t) = t

• Let f(t) = t.

L[f ] =
∫
∞

0

te−tdt

Integrating by parts, with

u = t

du = dt

dv = e−stdt

v = − 1

s
e−st

we get ∫
∞

0

te−tdt =

∫
∞

0

vdu

= uv|∞
0
−

∫
∞

0

vdu

= (t)

(
−
1

s
e−st

)∣∣∣∣
∞

0

−

∫
∞

0

(
−
1

s
e−st

)
dt

= 0− 0−
1

s2
e−st

∣∣∣∣
∞

0

=
1

s2

(b) f(t) = tn

• Now let f(t) = tn.

L[f ] =

∫
∞

0

tne−tdt

Integrating by parts, with

u = tn

du = ntn−1dt

dv = e−stdt

v = −1

s
e−st
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we get ∫
∞

0

tne−tdt =

∫
∞

0

vdu

= uv|∞
0
−

∫
∞

0

vdu

= (tn)

(
−
1

s
e−st

)∣∣∣∣
∞

0

−

∫
∞

0

(
−
1

s
e−st

)(
ntn−1dt

)

= 0− 0+
n

s

∫
∞

0

tn−1e−stdt

=
n

s
L
[
tn−1

]

=
n

s

n− 1

s
L
[
tn−2

]

=
n(n− 1)(n− 2)

s3
L
[
tn−3

]
...

=
n(n− 2) · · · (2)

sn−1
L [t]

=
n!

sn+1

4. Use the Laplace transform to solve the given initial value problem.

y′′ − y′ − 6y = 0 ; y(0) = 1 , y′(0) = −1(1)

• Taking the Laplace transform of both sides of the differential equation yields

0 = L[y′′]−L[y′]−L[6y]

=
(
s2L[y]− sy(0)− y′(0)

)
− (sL[y]− y(0))− 6L[y]

= s2L[y]− s(1)− (−1)− sL[y] + (1) − 6L[y]

=
(
s2 − s− 6

)
L[y]− s+2

or

L[y] =
s− 2

s2 − s− 6
=

s− 2

(s+ 2)(s− 3)

the differential equation for y becomes an algebraic equation for L[y]. To undo this Laplace transform
we first carry out a partial fractions expansion of the right hand side of the equation for L[y].

s− 2

(s+ 2)(s− 3)
=

A

s+2
+

B

s− 3
⇒ s− 2 = A(s− 3) +B(s+ 2)

This expansion must be valid for all values of s; in particular when s = −2 and when s = 3. In the
former case

we have

s = −2 ⇒ −4 = (−2) − 2 = A(−2− 3) +B(−2 + 2) = −5A

so we must have A = 4

5
. In the latter case, we have

s = 3 ⇒ 1 = (3)− 2 = A(3− 3) +B(3 + 2) = 5B
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so B = 1

5
. We then have

L[y] =
s− 2

(s+ 2)(s− 3)

=
4

5

1

s+2
+

1

5

1

s− 3

=
4

5
L[e−2x] +

1

5
L[e3x]

= L

[
4

5
e−2x +

1

5
e3x

]

Hence, (taking inverse Laplace transform of both sides)

y =
4

5
e−2x +

1

5
e3x

5. Use the Laplace transform to solve the given initial value problem.

y
′′ − 2y′ +2y = 0 ; y(0) = 0 , y

′(0) = 1 .

• Taking the Laplace transform of both sides of the differential equation yields

0 = s2L[y]− sy(0)− y′(0) − 2 (sL[y]− y(0)) + 2L[y]
=

(
s2 − 2s+2

)L[y]− 1

or

L[y] = 1

s2 − 2s+2
=

1

s2 − 2s+1 + 1
=

1

(s− 1)2 +1

We now consult a table of Laplace transform and spot the following identity

L [
eat sin(bt)

]
=

b

(s− a)2 + b2

which looks just like the right hand side of our expression for L[y] once we thake a = −1 and b = 1.
We conclude

L[y] = L[e−x sin(x)]

or

y(x) = e−x sin(x)

6. Use the Laplace transform to solve the given initial value problem.

y
′′ − 2y′ − 2y = 0 ; y(0) = 2 , y

′(0) = 0 .

• Taking the Laplace transform of the differential equation we get

0 = s2L[y]− sy(0)− y′(0) − 2 (sL[y]− y(0))− 2L[y]
=

(
s2 − 2s− 2

)L[y]− 2s+2

=
(
s2 − 2s− 2

)L[y]− 2s+2
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Thus,

L[y] =
2s− 2

s2 − 2x− 2

= 2
s− 1

s2 − 2s+ 1− 3

= 2
s−

√
3− 1 +

√
3

(s− 1)2 − 3

= 2
s−

√
3

(s− 1)2 − 3
− 2 + 2

√
3√

3

√
3

(s− 1)2 − 3

To undo this Laplace transform it is helpful to first look at a table of Laplace transforms. From such
a table one finds

L[eat cosh(bt)] =
s− a

(s− a)2 − b2

L[eat sinh(bt)] =
b

(s− a)2 − b2

and so taking a = 1 and b =
√
3 we have

L[y] = 2L[ex cosh(
√
3x)]− 2 + 2

√
3√

3
L
[
e
x sinh(

√
3x)

]

= L
[
2ex cosh(

√
3x) − 2 + 2

√
3√

3
e
x sinh(

√
3x)

]

so

y(x) = 2ex cosh(
√
3x) − 2 + 2

√
3√

3
e
x sinh(

√
3x)

7. Use the Laplace transform to solve the given initial value problem.

y
′′ + 2y′ + y = 4e−t ; y(0) = 2 , y

′(0) = −1 .

• Taking the Laplace transform of both sides of the differential equation we get

s
2L[y]− sy(0) − y

′(0) + 2 (sL[y]− y(0)) + L[y] = L[4e−t]

or (
s
2 + 2s+ 1

)L[y]− 2s+ 1− 4 =
4

s+1
or

(s+1)2L[y] = 4

s+1
+ 2s+3 =

4 + 2s2 + 3s+ 3

s+ 1
=

2s2 +3s+7

s+ 1
or

L[y] = 2s2 + 3s+ 7

(s+1)
3

We now determine the partial fractions expansion of the right hand side. The general ansatz is

P (x)

(s+ a)3
=

A

s+ a
+

B

(s+ a)
2
+

C

(s+ a)
3

and so we will try to find constants A,B,C such that

2s2 + 5s+ 7

(s+1)3
=

A

s+1
+

B

(s+ 1)2
+

C

(s+ 1)3
.
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Multiplying both sides by (s+1)3 we get

2s2 +5s+7 = A (s+ 1)
2
+B (s+ 1) + C .

Plugging in s = −1 we find

2− 5 + 7 = C

or

C = 4.

Plugging in s = 0 yields

7 = A+B +C = A+B +4

or

A+B = 3.

Plugging in s = 1 yields

14 = 4A+2B + C = 4A+2B +4

or

4A+2B = 10

or

2A+B = 5.

We now solve

A+B = 3

2A+B = 5

for A and B. Subtracting the first equation from the second we obtain

A+0 = 2 ⇒ A = 2.

Now the first equation yields

2 +B = 3 ⇒ B = 1.

Thus, A = 2, B = 1, and C = 4. Applying this partial fractions expansion to the equation for L[y]
now yields

L[y] =
2s2 +3s+7

(s+ 1)3
=

2

s+1
+

1

(s+1)2
+

4

(s+ 1)3

Now from a Table of Laplace transforms we find

L
[
tneat

]
=

n!

(s+ a)n+1

Hence
1

s+1
= L[e−t]

1

(s+1)2
= L[te−t]

1

(s+1)3
=

1

2
L[t2e−t]

so

L[y] = 2L[e−t] + 1L[te−t] + 4
1

2
L[t2e−t]

= L
[
2e−t + te

−t + 2t2e−t
]

Taking the inverse Laplace transform of both sides we finally get

y(t) =
(
2t2 + t+ 2

)
e
−t

.
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