
Math 2233

Homework Set 7

1. Find the general solution to the following differential equations. If initial conditions are specified, also
determine the solution satisfying those initial conditions.

(a) y(4) + 2y′′ + y = 0
• The characteristic equation is

0 = λ4 +2λ2 + y = (λ2 +1)2 = ((λ − i) (λ+ i))
2
= (λ− i)

2
(λ+ i)

2

We thus have two complex roots, λ = +i,−i each with multiplicity two. The corresponding
linearly independent solutions are

y1(x) = cos(x)

y2(x) = x cos(x)

y3(x) = sin(x)

y4(x) = x sin(x)

and the general solution is

y(x) = c1 cos(x) + c2x cos(x) + c3 sin(x) + c4x sin(x)

(b) y′′′ − y′′ − y′ + y = 0
• The characteristic equation is

0 = λ3 − λ2 − λ +1

Note that the right hand side vanishes when λ = 1; therefore (λ − 1) must be a factor of λ3 −
λ2 − λ +1. Indeed,

(λ− 1) |λ3 − λ2 − λ+ 1 = λ
2 − 1 = (x− 1)(x+ 1)

So the characteristic polynomial factors as

λ3 − λ2 − λ +1 = (λ − 1)2(λ+ 1)

Thus we have a double root at λ = 1 and a single root at λ = −1. The corresponding linearly
independent solutions are

y1(x) = ex

y2(x) = xex

y3(x) = e−x

and the general solution is

y(x) = c1e
x + c2xe

x + c3e
−x

(c) y′′′ − 3y′′ + 3y′ − y = 0, y(0) = 1, y′(0) = 2, y′′(0) = 3
• The characteristic equation is

0 = λ3 − 3λ2 +3λ− 1

Again λ = 1 is an obvious solution and so (λ − 1) is a factor of λ3 − 3λ2 + 3λ − 1. To find the
remaining factors we employ polynomial division and find

(λ − 1) |λ3 − 3λ2 +3λ− 1 = λ2 − 2λ +1 = (λ− 1)2

and so

0 = λ3 − 3λ2 +3λ − 1 = (λ − 1) (λ − 1)2 = (λ − 1)3

1
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We thus have a triple root λ = 1. The corresponding linearly independent solutions are

y1(x) = ex

y2(x) = xe
x

y3(x) = x2ex

and the general solution is

y(x) = c1e
x + c2xe

x + c3x
2ex

We shall now impose the initial condtions to fix the arbitrary constants c1, c2, and c3.

1 = y(0) = c1e
0 + c2(0)e

0 + c3(0)
2e0 = c1

2 = y′(0) = c1e
0 + c2

(
e0 + (0)e0

)
+ c3

(
2(0)e0 + (0)2e0

)
= c1 + c2

3 = y
′′(0) = c1e

0 + c2
(
e
0 + e

0 + (0)e0
)
+ c32e

o + 2(0)e0 +2(0)e0 + (0)2e0 = c1 +2c2 +2c3

and so we have

c1 = 1

c2 = 2− c1 = 2− 1 = 1

c3 =
1

2
(3− c1 − 2c2) =

1

2
(3− 1− 2) = 0

The solution to the initial value problem is thus

y(x) = ex + xex

(d) y′′′ +5y′′ − y′ − 5y = 0
• The characteristic equation is

0 = λ3 +5λ2 − λ+ 5

Again we are lucky enough to spot the solution λ = 1 and so we can identify the other roots by
factoring the right hand side of

(λ − 1) |λ3 +5λ2 − λ+ 5 = λ2 − 4λ+ 5

Obviously, λ2 − 4λ+5 = (λ− 5)(λ+1), and so the right hand side of the characteristic equation
factors as

0 = (λ− 1)(λ− 5)(λ+ 1)

We thus have three distinct roots λ = 1,5,−1. The corresponding linearly independent solutions
are

y1(x) = ex

y2(x) = e5x

y3(x) = e−x

and the general solution is

y(x) = c1e
x + c2e

5x + c3e
−x

(e) y(4) − 9y′′ = 0
The characteristic equation is

0 = λ4 − 9λ2 = λ2(λ2 − 9) = λ2(λ− 3)(λ+ 3) = (λ− 0)2 (λ− 3)(+3)
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We thus have a double root at λ = 0, and single roots at λ = ±3. The corresponding linearly
independent solutions are

y1(x) = e0x = 1

y2(x) = xe0x = x

y3(x) = e3x

y4(x) = e−3x

and the general solution is

y(x) = c1 + c2x+ c3e
3x + c4e

−3x

2. Combine each of the following power series expressions into a single power series.

(a)
∞∑

n=1

(n+1)(x− 1)n−1 +
∞∑

n=0

n(x− 1)n

• First we shift the summation index of the first power series up by 1 (remembering to shift its
starting point down by 1);

∞∑

n=1

(n+1)(x− 1)n−1 +
∞∑

n=0

n(x− 1)n =
∞∑

n=0

(n+ 2)(x− 1)n +
∞∑

n=0

n(x− 1)n

Now both power series start off at the same value of n and involve the same powers of (x− 1); so
we can combine them into a single power series by simply adding the coefficients of like powers
of (x− 1). Hence,

∞∑

n=1

(n+ 1)(x− 1)n−1 +
∞∑

n=0

nxn =
∞∑

n=0

((n+ 2) + n) (x− 1)n

=
∞∑

n=0

(2n+2)(x− 1)n

(b)
∞∑

n=0

(n+1)an+2x
n+1 +

∞∑

n=0

nanx
n−1

• This problem can be handled several different ways. We could shift the summation index of the
first series down by 2, or we could shift the summation index of the second series up by 2, or we
could shift the first up by 1 and the second down by 1. Let’s do it the first way

∞∑

n=0

(n+ 1)an+2x
n+1 +

∞∑

n=0

nanx
n−1 =

∞∑

n=2

(n− 1)anx
n−1 +

∞∑

n=0

nan+2x
n−1

=
∞∑

n=2

(n− 1)anx
n−1 + 0a2x

−1 +1a3x
0 +

∞∑

n=2

nan+2x
n−1

= a3 +
∞∑

n=2

((n− 1)an + nan+2)x
n−1

= a3 +
∞∑

n=1

((n− 1)an+1 + (n+1)an+3)x
n

In the last step we shifted the summation index again just so that it would be easy to identify
the total coefficient of the nth power of x in terms of n.

(c) (x− 1)
∞∑

n=0

nanx
n−1 +

∞∑

n=0

anx
n
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•

(x−1)
∞∑

n=0

nnanx
n−1 +

∞∑

n=0

anx
n = x

∞∑

n=0

nanx
n−1−

∞∑

n=0

nanx
n−1+

∞∑

n=0

anx
n

=
∞∑

n=0

nanx
n−

∞∑

n=0

nanx
n−1+

∞∑

n=0

anx
n

=
∞∑

n=0

nanx
n−

∞∑

n=−1

(n+ 1)an+1x
n+

∞∑

n=0

anx
n

=
∞∑

n=0

nanx
n−

(
(−1 + 1)a−1+1x

−1 +
∞∑
n=0

(n+1)an+1x
n

)

+
∞∑
n=0

a
n
xn

=
∞∑
n=0

nanx
n

−

∞∑
n=0

(n+ 1)an+1x
n+

∞∑
n=0

anx
n

=
∞∑
n=0

(nan − (n+ 1)an+1 + an)x
n

=
∞∑
n=0

(n+1) (an − an+1)x
n

(d) x

∞∑
n=0

nan(x− 1)n−1 +
∞∑
n=0

an(x− 1)n

•

x

∞∑
n=0

nan(x− 1)n−1 +
∞∑
n=0

an(x− 1)n = x

∞∑
n=0

nan(x− 1)n−1 +
∞∑
n=0

an(x− 1)n

= [(x− 1) + 1]
∞∑
n=0

nan(x− 1)n−1 +
∞∑
n=0

an(x− 1)n

=
∞∑
n=0

nan(x− 1)n +
∞∑
n=0

nan(x− 1)n−1 +
∞∑
n=0

an(x− 1)n

=
∞∑
n=0

nan(x− 1)n +
∞∑

n=−1

(n+1)an+1(x− 1)n +
∞∑
n=0

an(x− 1)n

=
∞∑
n=0

nan(x− 1)n +

(
(0)a0(x− 1)0 +

∞∑
n=−1

(n+ 1)an+1(x− 1)n

)

+
∞∑
n=0

an(x− 1)n

=
∞∑
n=0

nan(x− 1)n +
∞∑
n=0

(n+1)an+1(x− 1)n +
∞∑
n=0

an(x− 1)n

=
∞∑
n=0

(nan + (n+ 1)an+1 + an) (x− 1)n

=
∞∑
n=0

((n+ 1)a
n+1 + (n+ 1)an) (x− 1)n
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(e) x2
∞∑
n=0

n(n− 1)a

n

(x− 1)n−2

• We shall begin by calculating the Taylor expansion of x2 about xo = 1.

x2 = f(x) = f(1) + f ′(1)(x− 1) +
f ′′(1)

2!
(x− 1)2 +

f ′′′(1)

3!
(x− 1)3 + · · ·

= 1 + 2(x− 1) +
2

2!
(x− 1)2 +

0

3!
(x− 1)3 +

0

4!
(x− 1)4 + · · ·

= 1 + 2(x− 1) + (x− 1)2

Therefore

x2
∞∑
n=0

n(n− 1)a
n
(x− 1)n−2 =

(
1 + 2(x− 1) + (x− 1)2

) ∞∑
n=0

n(n− 1)a
n
(x− 1)n−2

=
∞∑
n=0

n(n − 1)an(x− 1)
n−2 + 2(x− 1)

∞∑
n=0

n(n− 1)an(x− 1)
n−2

+(x− 1)2
∞∑
n=0

n(n− 1)an(x− 1)
n−2

=
∞∑
n=0

n(n − 1)an(x− 1)
n−2 +

∞∑
n=0

2n(n− 1)an(x− 1)
n−1

+
∞∑
n=0

n(n− 1)an(x− 1)
n

=
∞∑

n=−2

(n+2)(n+ 1)a
n+2(x− 1)

n +
∞∑

n=−1

2(n +1)(n)a
n+1(x− 1)

n

+
∞∑
n=0

n(n− 1)an(x− 1)
n

=

(
0 + 0 +

∞∑
n=0

(n +2)(n+ 1)an+2(x− 1)
n

)

+

(
0 +

∞∑
n=0

2(n+1)(n)a
n+1(x− 1)

n

)

+
∞∑
n=0

n(n− 1)an(x− 1)
n

=
∞∑
n=0

[(n+ 2)(n+1)an+2 + 2n(n +1)an+1 + n(n− 1)an] (x− 1)
n

•

3. Find the recursion relations for the power series solutions y(x) =
∑
∞

n=0
an(x − xo)

n of the following
differential equations

(a) y
′′
− xy

′
− y, xo = 0

• Setting

y(x) =
∞∑
n=0

an (x− 0)
n

=
∞∑
n=0

anx
n
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into the differential equation (??), we get

0 =
∞∑

n=0

n(n− 1)anx
n−2

− x

∞∑

n=0

nanx
n−1

−

∞∑

n=0

anx
n

=
∞∑

n=0

n(n− 1)anx
n−2

− x

∞∑

n=0

nanx
n
−

∞∑

n=0

anx
n .

We now shift the first series by 2 by setting

k = n − 2

n = k +2

and simply relabel the counting index of the last two series by k.

0 =
∞∑

k=−2

(k +2)(k + 1)ak+2x
k
−

∞∑

k=0

kakx
k

∞∑

k=0

akx
k

= (−2 + 2)(−2 + 1)a0x
−2 + (−1 + 2)(−1 + 1)a1x

−1 +
∞∑

k=0

(k + 2)(k +1)ak+2x
k

−

∞∑

k=0

kakx
k
−

∞∑

k=0

akx
k

= 0 + 0 +
∞∑

k=0

(k +2)(k + 1)ak+2x
k
−

∞∑

k=0

kakx
k
−

∞∑

k=0

akx
k

=
∞∑

k=0

((k +2)(k +1)ak+2 − kak−ak)x
k

In order to ensure that the right hand side vanish for all x we now demand the total coefficient
of xk vanish for all k. Thus

(k +2)(k + 1)ak+2 − (k + 1)ak = 0 , for all k ,

or, after solving for ak+2 and then replacing k by n

an+2 =
an

(n+2)
.

The above equation is the recursion relation for the coefficients ak.
(b) y′′ − xy′ − y = 0, xo = 1

• We set

y(x) =
∞∑

n=0

an(x− 1)
n

and plug into the differential equation:

0 =
∞∑

n=2

n(n− 1)an(x− 1)
n−2

− x

∞∑

n=1

nan(x− 1)
n−1

−

∞∑

n=0

an(x− 1)
n .
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The hardest part about this problem will be to combine the three power series appearing on the
right hand side of the equation above into a single power series. We have

0 =
∞∑

n=2

n(n − 1)an(x− 1)
n−2

− x

∞∑

n=1

nan(x− 1)
n−1

−

∞∑

n=0

an(x− 1)
n

=
∞∑

n=2

n(n − 1)an(x− 1)
n−2

− (x− 1 + 1)
∞∑

n=2

nan(x− 1)
n−1

−

∞∑

n=0

an(x− 1)
n

=
∞∑

n=1

n(n − 1)an(x− 1)
n−2

− (x− 1)
∞∑

n=1

nan(x− 1)
n−1

−

∑

n=1

nan(x− 1)
n−1

−

∞∑

n=0

an(x− 1)
n

=
∞∑

n=2

n(n − 1)an(x− 1)
n−2

−

∞∑

n=1

nan(x− 1)
n
−

∞∑

n=1

nan(x− 1)
n−1

−

∞∑

n=0

an(x− xo)
n

=
∞∑

m=0

(m+ 2)(m+ 1)am+2(x− 1)
m
−

∞∑

n=0

nan(x− 1)
n

−

∞∑

k=0

(k +1)ak+1(x− 1)
k
−

∞∑

n=0

an(x− 1)
n

=
∞∑

n=0

(n+2)(n+ 1)an+2(x− 1)
n
−

∑

n=0

nan(x− 1)
n

−

∞∑

n=0

(n+ 1)an+1(x− 1)
n
−

∞∑

n=0

an(x− 1)
n

=
∞∑

n=0

((n+2)(n +1)an+2 − nan − (n+1)an+1 + an) (x− 1)
n

We must therefore have

0 = (n+ 2)(n+1)an+2 − nan − (n+ 1)an+1 − an

or

an+2 =
an + an+1

(n+2)
.

(c) (1− x)y′′ + y = 0, xo = 0
•

(1− x)y′′ + y = 0 , xo = 0

Since xo = 0, we set

y(x) =
∞∑

n=0

anx
n

and plug this expression for y(x) into the differential equation. This yields

0 = (1− x)
∞∑

n=0

n(n− 1)anx
n−2 +

∞∑

n=0

anx
n

=
∞∑

n=0

n(n− 1)anx
n−2

−

∞∑

n=0

n(n− 1)anx
n−1 +

∞∑

n=0

anx
n
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We now perform the usual shifts of summation indices (in order to put each series in standard
form) and then combine the above sum of three series into a single series.

0 =
∞∑

k=−2

(k +2)(k + 1)ak+2x
k
−

∞∑

k=−1

(k +1)(k)ak+1x
k +

∞∑

k=0

akx
k

= 0 + 0 +
∞∑

k=0

(k +2)(k + 1)ak+2x
k
− 0−

∞∑

k=0

(k + 1)(k)ak+1x
k +

∞∑

k=0

akx
k

=
∞∑

k=0

((k +2)(k +1)ak+2 − k(k + 1)ak+1 + ak)x
k

We can now read off the recursion relation:

(k +2)(k +1)ak+2 − k(k + 1)ak+1 + ak = 0

or, after solving for ak+2 and then replacing k by n

an+2 =
n(n+1)an+1 − an

(n+ 2)(n+1)

(d) y′′ + xy′ + 2y = 0, xo = 0
• Since xo = 0, we set

y(x) =
∞∑

n=0

anx
n

and plug this expression for y(x) into the differential equation. This yields

0 =
∞∑

n=0

n(n− 1)anx
n−2 + x

∞∑

n=0

nanx
n−1 + 2

∞∑

n=0

anx
n

=
∞∑

n=0

n(n− 1)anx
n−2 +

∞∑

n=0

nanx
n +

∞∑

n=0

2anx
n

We now perform the usual shifts of summation indices (in order to put each series in standard
form) and then combine the above sum of three series into a single series.

0 =
∞∑

k=−2

(k + 2)(k +1)ak+2x
k +

∞∑

k=0

kakx
k +

∞∑

k=0

2akx
k

= 0 + 0 +
∞∑

k=0

(k + 2)(k +1)ak+2x
k +

∞∑

k=0

kakx
k +

∞∑

k=0

2akx
k

=
∞∑

k=0

((k + 2)(k +1)ak+2 + (k +2)ak)x
k

Our recursion relations are thus,

(k +2)(k +1)ak+2 + (k + 2)ak = 0

or, after solving for ak+2 and then replacing k by n

an+2 =
an

n+1
.

(e) (1 + x2)y′′ − 4xy′ +6y = 0, xo = 0
• Since xo = 0, we set

y(x) =
∞∑

n=0

anx
n
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and plug this expression for y(x) into the differential equation. This yields

0 = (1 + x2)
∞∑

n=0

n(n− 1)anx
n−2

− 4x
∞∑

n=0

nanx
n +6

∞∑

n=0

anx
n

=
∞∑

n=0

n(n− 1)anx
n−2 +

∞∑

n=0

n(n − 1)anx
n
−

∞∑

n=0

4nanx
n +

∞∑

n=0

6anx
n

We now perform the usual shifts of summation indices (in order to put each series in standard
form) and then combine the above sum of three series into a single series.

0 =
∞∑

k=−2

(k +2)(k + 1)ak+2x
k +

∞∑

k=0

k(k − 1)akx
k
−

∞∑

k=0

4kakx
k +

∞∑

k=0

6akx
k

= 0 + 0 +
∞∑

k=0

(k +2)(k + 1)ak+2x
k +

∞∑

k=0

k(k − 1)akx
k
−

∞∑

k=0

4kakx
k +

∞∑

k=0

6akx
k

=
∞∑

k=0

(
(k +2)(k + 1)ak+2 +

(
k2 − 5k + 6

)
ak
)
xk

=
∞∑

k=0

((k +2)(k + 1)ak+2 + (k − 2)(k − 3)ak)x
k

We thus arrive at the following recursion relation (k+2)(k+1)ak+2+(k−2)(k−3)ak = 0. After
solving for ak+2 and then replacing k by n

an+2 =
−(n− 2)(n− 3)an
(n +2)(n+ 1)

.

4. Find power series expressions for the general solutions of the following differential equations. (You may
utilize recursion relations found in Problem 3.)

(a) y′′ − xy′ − y = 0, xo = 0
• In Problem 3a we found that the recursion relations for a power series solution about xo = 0 for
this differential equation are

an+2 =
an

n +2

We will now apply these recursion relations for n = 0, 1,2,3, . . . to get expressions for the coeffi-
cients a2, a3, a4, a5, . . . in terms of the first two coefficients a0 and a1.

n = 0 ⇒ a2 = a0+2 =
a0

0+2
= a0

2

n = 1 ⇒ a3 = a1+2 =
a1

1+2
= a1

3

n = 2 ⇒ a4 = a2+2 =
a2

2+2
= a2

4
= a0

2·4

n = 3 ⇒ a5 = a3+2 =
a3

3+2
= a3

5
= a1

3·5

n = 4 ⇒ a6 = a4+2 =
a4

4+2
= a4

6
= a0

2·4·6
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Hence

y(x) =
∞∑

n=0

a
n
x
n

= a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + · · ·

= a0 + a1x+
a0

2
x
2 +

a1

3
x
3 +

a0

2 · 4
x
4 +

a1

3 · 5
x
5 +

a0

2 · 4 · 6
x
6 + · · ·

= a0

(
1+

1

2
x
2 +

1

2 · 4
x
4 +

1

2 · 4 · 6
x
6 + · · ·

)

+a1

(
x+

1

3
x
3 +

1

3 · 5
x
5 + · · ·

)

(b) y
′′
− xy − y = 0, xo = 1

• n Problem 3b we found that the recursion relations for a power series solution about x
o
= 0 for this

differential equation are

an+2 =
an + an+1

(n +2)

We will now apply these recursion relations for n = 0,1,2, . . . to get expressions for the coefficients
a2, a3, a4, . . . in terms of the first two coefficients a0 and a1.

n = 0 ⇒ a2 = a0+2 =
a0+a1
0+2

= a0

2
+ a1

2

n = 1 ⇒ a3 = a1+2 =
a1+a2
1+2

= a1

3
+ 1

3

(
a0

2
+ a1

2

)
= a0

6
+ a1

2

n = 2 ⇒ a4 = a2+2 =
a2+a3
2+2

= 1

4

(
a0

2
+ a1

2

)
+ 1

4

(
a0

6
+ a1

2

)
= a0

6
+ a1

4

Therefore

y(x) =
∞∑

n=0

a
n
(x− 1)n

= a0 + a1(x− 1) + a2(x− 1)
2 + a3(x− 1)

3 + a4(x− 1)
4 + · · ·

= a0 + a1(x− 1) +
(
a0

2
+

a1

2

)
(x− 1)2 +

(
a0

6
+

a1

2

)
(x− 1)3 +

(
a0

6
+

a1

4

)
(x− 1)4 + · · ·

= a0

(
1 +

1

2
(x− 1)2 +

1

6
(x− 1)3 +

1

6
(x− 1)4 + · · ·

)
+

a1

(
(x− 1) +

1

2
(x− 1)2 +

1

2
(x− 1)3 +

1

4
(x− 1)4 + · · ·

)

5. Find power series expressions for the solutions to the following initial value problems. (You may utilize
recursion relations found in Problem 3.)

(a) (1− x)y′′ + y = 0, y(0) = 2, y′(0) = 1
• In Problem 3c we obtained the following recursion relations for power series solutions of this
differential equation (expanded about xo = 0).

an+2 =
n(n+1)an+1 − an

(n+ 2)(n+1)

For such solutions

y(x) =
∞∑

n=0

anx
n
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the initial conditions imply

2 = y(0) = a0

1 = y
′(0) = a1

We now can apply the recursion relations to get numerical values for a2, a3, a4, . . .

n = 0 ⇒ a2 =
0(0+1)a−+a0

2·1 = −
a0

2 = −1

n = 1 ⇒ a3 =
1(1+1)a2−a1

3·2 = 2a2−a1
6 = −2−1

6 = −
1
2

n = 2 ⇒ a4 =
2(2+1)a3−a2

4·3
= 6a−a2

12
= −3+1

12
= −

1
6

n = 3 ⇒ a5 =
3(3+1)a4−a3

5·4 = 12a4−a3
20 =

−2+ 1

2

20 = −
3
40

so

y(x) =
∞∑

n=0

a
n
x
n

= a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5

= 2 + x− x
2
−

1

2
x
3
−

1

6
x
4
−

3

40
x
5 + · · ·

(b) y
′′
− xy

′
− y = 0, y(1) = 1, y′(1) = 2

• In Problem 3b we found that the recursion relations for a power series solution about xo = 1 for this
differential equation are

a
n+2 =

an + an+1

(n +2)

Also, also in Problem 4b we found that the power series expansion about x0 = 1 of the general solution
to this differential equation is

y(x) = a0 + a1(x− 1) +
(
a0

2
+

a1

2

)
(x− 1)2 +

(
a0

6
+

a1

2

)
(x− 1)3 +

(
a0

6
+

a1

4

)
(x− 1)4 + · · ·

All that remains to be done is to use the initial conditions to fix the values of the first two coefficients.

y(1) = 1 ⇒ a0 = 1
y

′(1) = 2 ⇒ a1 = 2

Therefore, the solution to the initial value problem is

y(x) = 1 + 2(x− 1) +

(
1

2
+
2

2

)
(x− 1)2 +

(
1

6
+
2

2

)
(x− 1)3 +

(
1

6
+
2

4

)
(x− 1)4 + · · ·

= 1 + 2(x− 1) +
3

2
(x− 1)2 +

7

6
(x− 1)3 +

7

24
(x− 1)4 + · · ·


