
Math 2233

Homework Set 5

1. Determine whether the given equation is linear or nonlinear. If it is linear, write it in standard form and
state whether it is homogeneous or non-homogeneous.

(a) xy′′ +2x3y′ + y = 0

• The equation is linear. To put it in standard form we divide through by x to get

y′′ +2x2y′ +
1

x
= 0.

This is a homogeneous linear differential equation.

(b) y′′ + xy′ + y2 = 2x

• This equation is non-linear due to the presence of the y2 term.

(c) 3y′′ +2y′ + y = x5

• This equation is linear. To put it in standard form we divide through by 3 to get

y′′ +
2

3
y′ +

1

3
y =

1

3
x5.

This equation is non-homogeneous, due to the presence of the 1

3
x5 on the right hand side when it’s

written in standard form.

2. Verify that the two given functions are linearly independent solutions of the given homogeneous equation
and then find the general solution.

(a) y′′ + 9y = 0, y1(x) = sin(3x), y2(x) = cos(3x)

•

y′′

1
+ 9y1 = (3 cos(3x))

′

+ 9sin(3x)

= 3 (−3 sin(3x)) + 9 sin(3x)

= (−9 + 9) sin(3x)

= 0

y′′

2
+9y2 = (−3 sin(3x))′ + 9cos(3x)

= −3 (3 cos(3x)) + 9 cos(3x)

= (−9 + 9) cos(3x)

= 0

So both y1 and y2 are solutions. They are linearly independent since

W [y1, y2](x) ≡ y1(x)y
′

2
(x)− y

′

1
(x)y2(x)

= sin(3x) (−3 sin(3x))− (3 cos(x)) cos(3x)

= −3
(
sin2(x) + cos2(x)

)
= −3 · 1

= −3

�= 0
1
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Since y1(x) and y2(x) are two linearly independent solutions of the homogeneous linear equation
y′′ + 9y = 0, the general solution of this equation is

y(x) = c1y1(x) + c2y2(x)

= c1 sin(3x) + c2 cos(3x)

(b) y′′ + 2y′ − 15y = 0, y1(x) = e3x, y2(x) = e−5x

•

y′′
1
+2y′

1
− 15y1 = (3)(3)e3x +2

(
3e3x

)
− 15e3x

= (9 + 6− 15) e3x

= 0

y′′
2
+ 2y′

2
− 15y2 = (−5)(−5)e−5x +2

(
−5e−5x

)
− 15e−5z

= (25− 10− 15) e−5x

= 0

So both y1(x) and y2(x) are solutions. They are also linearly independent since

W [y1, y2](x) ≡ y1(x)y
′

2
(x) − y′

1
(x)y2(x)

= e3x
(
−5e−5x

)
−

(
3e3x

)
e−5x

= (−5− 3) e−2x

= −8e−3x

�= 0

Since y1(x) and y2(x) are two linearly independent solutions of the homogeneous linear equation
y′′ + 2y′ − 15y = 0, the general solution of this equation is

y(x) = c1y1(x) + c2y2(x)

= c1e
3x + c2e

−5x

(c) y′′ +4y′ +4y = 0, y1(x) = e−2x, y2(x) = xe−2x

•

y
′′

1
+ 4y′

1
− 4y1 = (−2)(−2)e−2z +4

(
−2e−2x

)
+ 4e−2z

= (4− 8 + 4) e−2x

= 0

y′′
2
+4y′

2
+ 4y2 =

(
e−2x − 2xe−2x

)
′

+ 4
(
e−2x − 2xe−2x

)
+ 4xe−2x

=
(
−2e−2x − 2e−2x +4xe−2x

)
+4

(
e−2x − 2xe−2x

)
+4xe−2x

= (−2− 2 + 4) e−2x + (4− 8 + 4)xe−2x

= 0 + 0

= 0
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So both y1(x) and y2(x) are solutions. They are also linearly independent since

W [y1, y2](x) ≡ y1(x)y
′

2
(x)− y′

1
(x)y2(x)

= e−2x
(
e−2x − 2xe−2x

)
−

(
−2e−2x

)
xe−2x

= e−4x − 2xe−4x + 2xe−2x

= e−4x

�= 0

Since y1(x) and y2(x) are two linearly independent solutions of the homogeneous linear equation
y′′ + 4y′ + 4y = 0, the general solution of this equation is

y(x) = c1y1(x) + c2y2(x)

= c1e
−2x + c2xe

−2x

3. Given that y1(x) = e3x is one solution of y′′ − 5y′ + 6y = 0, find a second linearly independent solution
and then write down the general solution.

• To find a second linearly independent solution we apply the Reduction of Order formula

y2(x) = y1(x)

∫
x 1

[y1(s)]
2
exp

[
−

∫
s

p(t)dt

]
ds

For the case at hand, we have y1(x) = e3x and p(x) = −5, so

y2(x) = e3x
∫

x 1

(e3s)
2
exp

[
−

∫
s

(−5)dt

]
ds

= e3x
∫

x

e−6s exp [5s]ds

= e3x
∫

x

e−6se5sds

= e3x
∫

x

e−sds

= e3x
(
−e−x

)
= −e2x

∼ e2x

In the last step we dropped the minus sign simply because if −e2x is a solution so is e2x (because
of the Superposition Principle) , and the latter expression for y2(x) is a tad bit simpler.

The general solution is a linear combination of y1(x) and y2(x) :

y(x) = c1e
3x + c2e

2x.

4. Given that y1(x) = e2x is one solution of y′′ − 4y = 0, find a second linearly independent solution and
then write down the general solution.
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• We’ll again apply the Reduction of Order formula to get a second linearly independent solution. For
this problem we have y1(x) = e2x and p(x) = 0. So

y2(x) = e2x
∫

x 1

(e2s)
2
exp

[
−

∫
s

0 · dt

]
ds

= e2x
∫

x

e−4se0ds

= e2x
∫

x

e−4sds

= e2x
(
−

1

4
e
−4x

)

= −

1

4
e
−2x

∼ e
−2x

Again we have thrown away a constant factor to simplify the expression of y2(x). The general solution
is thus

y(x) = c1e
2x + c2e

−2x
.

5. Given that y1(x) = x is one solution of y′′ − 2xy′ + 2y = 0, find a second linearly independent solution
and then write down the general solution.

• We’ll again apply the Reduction of Order formula to get a second linearly independent solution. For
this problem we have y1(x) = x and p(x) = −2x. So

y2(x) = x

∫
x 1

s2
exp

[∫
s

2tdt

]
ds

= x

∫
x 1

s2
exp

[
s2
]
ds

= x

∫
x

es
2

s2
ds

Unfortunately, we can not actually carry out the final integration to get a simple formula of y2(x).
Nevertheless, the integral can at least always be evaluated numerically, and we can write the following
formula for the general solution of the original differential equation

y(x) = c1y1(x) + c2y2(x) = c1x+ c2x

∫
x

es
2

s2
ds .

6. Given that y1(x) = x sin(x) is one solution of x2y′′ − 2xy′ + (x2 + 2)y = 0, find a second linearly
independent solution and then write down the general solution.

• We’ll again apply the Reduction of Order formula to get a second linearly independent solution. This
time we have y1(x) = x sin(x) and p(x) = − 2

x
(to identify p(x) we first put the differential equation
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in standard form). So

y2(x) = x sin(x)

∫
x 1

(s sin(s))2
exp

[
−

∫
s

−
2

t
dt

]
ds

= x sin(x)

∫
x 1

(s sin(s))
2
exp [2 ln |s}] ds

= x sin(x)

∫
x 1

(s sin(s))
2
s2ds

= x sin(x)

∫
x 1

sin2(s)
ds

= x sin(x)

∫
x

csc2(s)ds

= x sin(x) (− cot(x))

= x sin(s)

(
−cos(x)

sin(x)

)

= −x cos(x)
∼ x cos(x)

where in the last step we dropped the factor of -1 to simplify the expression for y2(x).
The general solution is thus

y(x) = c1x sin(x) + c2x cos(x) .

7. Find the general solution of the following differential equations

(a) y′′ − 5y = 0.

• This is a second order linear equation with constant coefficients and so we look for solutions of the
form y(x) = eλx. Plugging y(x) = eλx into the differential equation yields

λ2eλx − 5eλx = 0

or (
λ
2 − 5

)
e
λx = 0

Thus the characteristic equation for this differential equation is

λ2 − 5 = 0

or

λ2 = 5

which obviously has as solutions

λ = ±
√
5

So both y1(x) = e
√
5x and y2(x) = e−

√
5x are solutions of the differential equation. Moreover, they

are linearly independent since

W [y1, y2] (x) = e
√
5x

(
−
√
5e−

√
5x

)
−
(√

5e
√
5x

)
e−

√
5x = −2

√
5 �= 0.

Therefore the general solution of the differential equation is

y(x) = c1e
√
5x + c2e

−
√
5x .

(b) y′′ − 3y +2y = 0
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• The characteristic equation for this second order linear equation with constant coefficients is

λ2 − 3λ+ 2 = 0

or

(λ− 1)(λ− 2) = 0

Thus, we have λ = 1,2 as solutions. To each of these roots of the characterisitic equation we have
a corresponding solution of the original differential equation; namely, y1(x) = ex and y2(x) = e2x.
These two solutions are linearly independent and so the general solution is

y(x) = c1e
x + c2e

2x .

(c) y′′ − y′ − 20y = 0

• The characteristic equation for this homogeneous second order linear equation with constant coeffi-
cients is

λ2 − λ− 20 = 0

or

(λ − 5) (λ +4) = 0.

Thus, λ = 5,−4 and we have two linearly independent solutions y1(x) = e5x and y2(x) = e−4x. The
general solution is thus

y(x) = c1e
5x + c2e

−4x .

(d) y′′ − 13y′ + 42y = 0

• The characteristic equation for this homogeneous second order linear equation with constant coeffi-
cients is

λ
2 − 13λ+ 42 = 0

To solve the characteristic equation we apply the Quadratic Formula:

λ =
−(−13)±

√
(−13)2 − 4 (42)

2

=
13±√169− 168

2

=
13± 1

2
= 7, 6

Thus, λ = 6,7 and we have two linearly independent solutions y1(x) = e6x and y2(x) = e7x. The
general solution is thus

y(x) = c1e
6x + c2e

7x

(e) y′′ + y′ + 7y = 0

• The characteristic equation for this homogeneous second order linear equation with constant coeffi-
cients is

λ2 + λ +7 = 0
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To solve the characteristic equation we apply the Quadratic Formula:

λ =
−1±

√
(1)2 − (4)(7)

2

=
−1±√1− 28

2

=
−1±√−27

2

=
−1±

√
27i

2

Thus, we have a pair of complex roots

λ = −1

2
+

√
27

2
i , −1

2
−
√
27

2
i

and so we take

α = Re(λ) = −1

2

β = ±Im(λ) =

√
27

2

Associated to the complex roots λ = α ± iβ are the following real-valued solutions of the original
differential equation:

y1(x) = eαx cos(βx) = e−
1

2
x cos

(√
27

2
x

)

y2(x) = eαx sin(βx) = e−
1

2
x sin

(√
27

2
x

)

and so the general solution is

y(x) = c1e
−

1

2
x cos

(√
27

2
x

)
+ c2e

−
1

2
x sin

(√
27

2
x

)
.

(f) y′′ + 2y′ + 5y = 0

• The characteristic equation for this homogeneous second order linear equation with constant coeffi-
cients is

λ2 + 2λ+ 5 = 0

To solve the characteristic equation we apply the Quadratic Formula:

λ =
−2±

√
(2)2 − (4)(5)

2

=
−2±√4− 20

2

=
−2±√−16

2

=
−2± 4i

2
= −1± 2i

Thus, we have a pair of complex roots

λ = −1 + 2i , −1− 2i
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so we take α = −1 = Re (λ) and β = 2 = ±Im(λ) . Associated to this pair of complex roots are the
following real-valued solutions of the original differential equation:

y1(x) = eαx cos(βx) = e−x cos (2x)

y2(x) = eαx sin(βx) = e−x sin (2x)

and so the general solution is

y(x) = c1e
−x cos (2x) + c2e

−x sin (2x) .

8. Solve the following initial value problems.

(a) y′′ − 9y = 0, y(0) = 1, y′(0) = 2.

• The characteristic equation for this homogeneous second order linear equation with constant coeffi-
cients is

λ2 − 9 = 0

or

(λ− 3)(λ+ 3) = 0

so λ = 3,−3. The general solution is thus

y(x) = c1e
3x + c2e

−3x .

We now impose the initial conditions to fix the constants c1 and c2.

1 = y(0) = c1e
0 + c2e

0 = c1 + c2

2 = y′(0) = 3c1e
3x − 3c2e

−3x
∣
∣
x=0

= 3c1 − 3c2

Thus we have two equations and two unknowns

c1 + c2 = 1

3c1 − 3c2 = 2

Adding 3 times the first equation to the second equation yields

6c1 +0 = 5

so c1 = 5

6
. But then the equation c1 + c2 = 1 implies that c2 = 1

6
. Thus, the solution to the initial

value problem is

y(x) =
5

6
e3x +

1

6
e−3x .

(b) y′′ − 2y′ + y = 0, y(0) = 2, y′(0) = 1.

• he characteristic equation for this homogeneous second order linear equation with constant coefficients
is

λ
2 − 2λ+ 1 = 0

or

(λ − 1)2 = 0

so λ = 1. So y1(x) = ex is one solution of the differential equation, and (because we are in the case
where there is only one distinct root for the characteristic equation) y2(x) = xy1(x) = xex is a second
linearly independent solution. The general solution is thus

y(x) = c1e
x + c2xe

x .

We now impose the initial conditions to fix c1 and c2:

2 = y(0) = c1e
0 + c2(0)e

0 = c1

1 = y′(0) = c1e
x + c2(e

x + xex)|
x=0

= c1 + c2
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Thus, we must have

c1 = 2

c1 + c2 = 1

Obviously, we must have c1 = 2 and c2 = −1. Thus, the solution to the initial value problem is

y(x) = 2ex − xex .

(c) y′′ +2y′ +2y = 0, y(0) = 1, y′(0) = −1

• The characteristic equation for this homogeneous second order linear equation with constant coeffi-
cients is

λ2 + 2λ+ 2 = 0

The Quadratic Formula thus implies

λ =
−2±

√
(2)2 − (4)(2)

2

=
−2±√−4

2

=
−2± 2i

2
= −1± i

We thus have a pair of complex roots λ = α± iβ with α = −1 and β = 1. The general solution is thus

y(x) = c1e
αx cos(βx) + c2e

αx sin(βx) = c1e
x cos(x) + c2e

x sin(x) .

We now impose the initial conditions to fix c1 and c2:

1 = y(0) = c1e
0 cos(0) + c2e

0 sin(0) = c1(1)(1) + c2(1)(0) = c2

−1 = y′(0) = c1 (e
x cos(x)− ex sin(x)) + c2 (e

x sin(x) + ex cos(x))|
x=0

= c1(1− 0) + c2(0 + 1) = c1 + c2

We thus have

c2 = 1

c1 + c2 = −1
which implies c1 = −2 and c2 = 1. Thus, the solution to the initial value problem is

y(x) = −2ex cos(x) + ex sin(x) .


