
Math 2233.04

SOLUTIONS TO FIRST EXAM

1. (10 pts.) Classify the following differential equations (identify their order, and state whether they are
linear or non-linear, partial or ordinary, differential eqations).

(a) dy
dx
− x

2
y = sin(x)

• 1st order, linear, ordinary

(b) y
∂2Φ
∂t2
−

∂Φ
∂y

= Φ2

• 2nd order, non-linear, partial

(c) x2 d
2y

dx2
+3xdy

dx
+ y = sin(xy)

• 2nd order, non-linear, ordinary
(d) y2 ∂Φ

∂x
+ x2 ∂Φ

∂x
= x

• 1st order, linear, partial

(e) d3f
dx3

+ x
d2f
dx2

+ (2x+1) df
dx

= f2

• 3rd order, non-linear, ordinary

2. Consider the plot below of the direction field for the differential equation y′ = −(y − 1)(y + 1).

(a) (5 pts) Sketch the solution curve satisfying y(0) = 0.

• The solution curve is superimposed on the figure above.

(b) (5 pts) Suppose y(x) is a solution satisfying y(0) = 2. What can you say about the asymptotic behavior
of y(x) as x→∞? Explain.

• The derivative

y′ = −(y − 1)(y + 1)

is always negative so long as y > 1, and is equal to zero when y = 1. So a solution y(x) will be
decreasing whenever y > 1, but its graph will flatten out as it approaches the line y = 1. Therefore,

lim
x→∞

y(x) = 1

for the solution that starts at y(0) = 2.
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3. (10 pts.) Use a two-step numerical (Euler) method to find an approximate value for y(1.2) where y is
the solution of

dy

dx
= x+ y2

y(1) = 1

(Use a step size of ∆x = 0.1).

• By virtue of the differential equation, the slope m of a solution curve passing through the point (x, y)
must be x+ y2

x0 = 1

y0 = 1

x1 = x0 +∆x = 1 + 0.1 = 1.1

y1 = y1 +m (x0, y0)∆x = 1 + (1+ 12)(0.1) = 1.2

x2 = x1 +∆x = 1.1 + 0.1 = 1.2

y2 = y1 +m (x1, y1)∆x = 1.2 +
(
1.1 + (1.2)2

)
(0.1) = 1,454

So y2 ≈ y(1.2) = 1.454

4. (10 pts) Find the first three terms of the Taylor expansion (i.e., the terms to order (x − 1)2 ) of the
solution of

df

dx
= xf2

f(1) = 1

• We have

f(1) = 1

f ′(1) =
df

dx

∣∣∣∣
x=1

=
[
x (f(x))

2

]∣∣∣
x=1

= (1)(1)2 = 1

f ′′(1) =
d2f

dx2

∣∣∣∣
x=1

=
d

dx

[
x (f(x))

2

]∣∣∣∣
x=1

=
d

dx

[(
f(x)2 + x2f(x)f ′(x)

)]∣∣∣∣
x=1

= 12 + (1)(2)(1)(1) = 3

So

f(x) = f(1) + f ′(1)(x− 1) +
1

2
f ′′(1)(x− 1)2 + · · ·

= 1 + (x− 1) +
3

2
(x− 1)

2
+ · · ·

5. (10 pts) Solve the following initial value problem.

xy′
− 2y = x2 , y(1) = 3 .

• This is a 1st order linear equation equivalent to

y′
−

2

x
y = x ⇒ p(x) = −

2

x
, g(x) = x

So we can compute the general solution via the following formula

µ(x) = exp

[∫
p(x)dx

]
= exp

[∫
−
2

x
dx

]
= exp [−2 ln |x|] = exp

[
ln

[
x−2

]]
= x−2

y(x) =
1

µ(x)

∫
x

µ(x̃)g(x̃)dx̃+
C

µ(x)
= x2

∫
x

x̃−2 (x̃) dx̃+ Cx2 = x2
∫

x dx̃

x̃
+ Cx2 = x2 ln |x|+Cx2



To fix the constant C we impose the initial condition

3 = y(1) = (1)2 ln |1|+C(1)2 = 0 +C ⇒ C = 3

Thus

y(x) = x2 ln |x|+ 3x2

6. (10 pts) Find the (explicit) solution of the following initial value problem. (Hint: the differential equation
is separable.)

3x2 − 2yy′ = 1 , y(0) = 1 .

• We can rewrite this equation as

2y
dy

dx
= 3x2 − 1 ⇒ 2ydy =

(
3x2 − 1

)
dx

Integrating both sides yields

y2 =

∫
2ydy =

∫ (
3x2 − 1

)
dx+C = x3 − x+ C

We can fix the constant C by demanding that the initial point (x, y) = (0, 1) lies on the solution curve

⇒ (1)2 = y2 = x3 − x+ C = (0)3 − 0 +C ⇒ C = 1

So

y2 = x3 − x+1 ⇒ y = ±
√
x3 − x+1

However, only the positive root will satisfy y(0) = 1, so

y(x) =
√
x3 − x+1

7. Consider the following differential equation.

2x+ sin(y) + (y + x cos(y))
dy

dx
= 0

(a) (5 pts) Show that this equation is exact

•

M = 2x+ sin(y) ⇒
∂M
∂y

= cos(y)

N = y + x cos(y) ⇒
∂N
∂x

= cos(y)

}
⇒

∂M

∂y
=

∂N

∂x
⇒ exact

(b) (10 pts) Find an implicit solution for this differential equation.

•

Ψ(x, y) =

∫
M∂x+H1(y) =

∫
(2x+ sin(y)) ∂x+H1(y) = x2 + x sin(y) +H1(y)

Ψ(x, y) =

∫
N∂y +H2(x) =

∫
(y + x cos(y)) ∂y +H2(x) =

1

2
y2 + x sin(y) +H2(x)

Comparing these two expressions for Ψ(x, y) we conclude that

Ψ(x, y) = x2 + x sin(y) +
1

2
y2

and so the original differential equation is equivalent to the following algebraic equation (the implicit
solution)

x2 + x sin(y) +
1

2
y2 = C



8. (10 pts) Use a change of variable to solve the following differential equation.

dy

dx
=
xy − y2

x2

(Hint: this equation is homogeneous of degree 0.)

• We have

dy

dx
=

xy

x2
−
y2

x2
=
(y
x

)
−
(y
x

)2
= F

(y
x

)
if F (z) ≡ z − z2

So the equation is homogeneous of degree 0. Therefore, we can make the substitution on the right
hand side and the substitution

y′ =
d

dx
(xz) = z + xz′

on the left hand side. We thus obtain the following equivalent differential equation

z + xz′ = F (z) = z − z2 ⇒ x
dz

dx
= −z2 ⇒ −

dz

z2
=
dx

x

Integrating both sides of this last equation (which is obviously separable and separated), we obtain

1

z
= ln |x|+C ⇒ z =

1

ln |x|+C
⇒

y

x
=

1

ln |x|+ C

or

y(x) =
x

ln |x|+C

9.
(a) (5 pts) Show that the following differential equation is not exact.

(1− y2)dx+ (1 + x− y − xy)dy = 0 .

M = 1− y2 ⇒ ∂M
∂y

= −2y

N = 1 + x− y − xy ⇒ ∂N
∂x

= 1− y

}
⇒

∂M

∂y
�=
∂N

∂x
⇒ not exact

(b) (10 pts) Find an integrating factor. (Hint: look for an integrating factor that depends only on y.)

•

F2 ≡
1

M

[
∂N

∂x
−
∂M

∂y

]
=

1

1− y2
[(1− y)− (−2y)]

=
1+ y

1− y2
=

1 + y

(1− y)(1 + y)
=

1

1− y

Since this depends only on y,

µ(y) = exp

[∫
F2(y)dy

]
= exp

[∫
1

1− y
dy

]

= exp [− ln [1− y]] = exp

[
ln

[
1

1− y

]]
=

1

1− y

should be an integrating factor. Sure enough

0 =
1

1− y

[
(1− y2)dx+ (1 + x− y − xy)dy

]

=
1

1− y
[(1− y)(1 + y)dx+ (1 + x)(1− y)dy]

= (1 + y)dx+ (1 + x)dy



is exact since
∂M

∂y
=

∂

∂y
(1 + y) = 1 =

∂

∂x
(1 + x) =

∂N

∂x


