
LECTURE 29

Application of Laplace Transforms to Initial Value Problems

Consider the following initial value problem.

y
′′
− y

′
− 2y = 0 , y(0) = 1 , y

′(0) = 0 .(29.1)

One method of solving this initial value problem would be to use the techniques of Section 3.5.

We will develop here another method based on the Laplace transform.

Suppose L(y) is the Laplace transform of the solution of (29.1). Then according to the previous theorem,
it must satisfy

0 = L [y′′
− y

′
− 2y] = s

2
L[y]− sy(0) − y

′

(0)− (sL[y]− y(0)) − 2L(y)(29.2)

or

0 =
(
s
2
− s− 2

)
L[y]− (s− 1)y(0) − y

′(0)

=
(
s
2
− s− 2

)
L[y]− (s− 1)

(29.3)

or

L[y] =
s− 1

s2 − s− 2
=

s− 1

(s + 1)(s− 2)
.(29.4)

We therefore look for a function whose Laplace transform is

s− 1

(s + 1)(s− 2)
.(29.5)

Now the above expression can be expanded using partial fractions as

s− 1

(s + 1)(s− 2)
=

2

3(s + 1)
+

1

3(s− 2)
.(29.6)

In Example 3. we found that

L
[
e
bx
]
=

1

s− b
, s > b .(29.7)

Thus,

L[y] =
s−1

(s+1)(s−2)

=
2

3(s+1)
+

1

3(s−2)

=
2

3

1

(s−(−1))
+

1

3

1

(s−2)

=
2

3
L [e−x] +

1

3
L
[
e
2x

]

= L
[
2

3
e
−x +

1

3
e
3x

]

(29.8)

So we should take

y(x) =
2

3
e
−x

+
1

3
e
3x

.(29.9)

Below I summarize how Laplace transforms can be used to solve ordinary differential equations.
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1. REVIEW OF PARTIAL FRACTIONS 2

1. Take the Laplace transform of both sides of the differential equation, using the identities

L [y′] (s) = sL[y]− y(0)

L [y′′] (s) = s
2
L[y]− sy(0)− y

′(0)
(29.10)

to replace the Laplace transforms of the derivative terms. Be sure to replace y(0) and y
′(0) by the appropriate

values (from the initial conditions).

2. Solve (algebraically) the resulting equation in order to express L [y] as an explicit function of s.

3. Try to identify a function f(x) such that L[f](s) is the function L[y] of s found in Step 2. To figure out f,

first consult the table of Laplace transforms to see if you can recognize L[y] as the Laplace transform of some

elementary function. If nothing pops out, try applying partial fractions to reduce a (more complicated)

rational function of s to a sum of simpler functions, and then consult the Laplace transform tables again.

4. The solution of the differential equation will be the function f(x) determined in Part 3.

1. Review of Partial Fractions

Partial fraction expansions are a very useful tool for figuring out inverse Laplace transforms. The basic

utility of the partial fraction expansion is that it can be used to replace a complicated rational function (a

ratio of two polynomials) by a sum of simpler rational functions. Suppose f(x) is rational function:

f(x) =
pnx

n + pn−1x
n−1 + · · ·+ p1x+ p0

qmx
m + qm−1x

m−1 + · · ·+ q1x+ q0

i.e. a ratio of two polynomials in x. We shall assume that we have already simplified this expression for

f(x) such that the numerator and denominator have no common factors. If the degree of the numerator

is greater than the degree of the denominator, then we can use polynomial division to reduce f(x) to the

sum of a polynomial in x plus a rational function as a remainder. We shall assume that the simplification

of f(x) has already proceded this far and we are now concentrating on the remainder, which would be of

the form

R(x) =
rm−1x

m−1 + rm−2x
m−2 + · · ·+ r1 + r0

qmx
m + qm−1x

m−1 + · · ·+ q1x+ q0

According to the Fundamental Theorem of Algebra, the denominator can be written as a product of irre-

ducible linear and quadratic factors

qmx
m + qm−1x

m−1 + · · ·+ q1x+ q0 = qm(x− ai)
m1

· · · (x− as)
ms

(x
2
+ b1x+ c1)

n1
· · · (x

2
+ btx+ ct)

nt

The partial fractions expansion of R(x) is a expression of the form

R(x) =
A1,1

x− a1
+

A1,2

(x− a1)
2

+ · · ·+
A1,m1

(x− a1)
m1

+ · · ·

· · ·+
As,1

x− as
+

As,2

(x− as)
2

+ · · ·+
As,ms

(x− as)
ms

+
B1,1x+C1,1

(x2 + b1x+ c1)
+

B1,2x+C1,2

(x2 + b1x+ c1)
2

+ · · ·+
B1,n1

x+ C1,n1

(x2 + b1x+ c1)
n1

+ · · ·

· · ·+
Bt,1x+Ct,1

(x2 + btx+ ct)
+

Bt,2x+Ct,2

(x2 + btx+ ct)
2

+ · · ·+
Bt,nt

x+Ct,nt

(x2 + b1x+ c1)
nt


