
LECTURE 28

The Laplace Transform

Suppose f : R→ R is a “nice” (to be qualified latter) function of x. The Laplace transform L[f ] of f is

the function from R to R defined by

L[f ](s) =

∫
∞

0

e−sxf(x) dx .(28.1)

We note that in the formula above, s is the variable upon which the Laplace transform L[f ] depends.

Example 28.1. If

f(x) = ax(28.2)

then

L[f ](s) =

∫
∞

0
axe

−sx
dx

= limN→∞

(
−a

s
xe
−sx − a

s2
e
−sx

)∣∣N
0

= a

s2

(28.3)

Note that this result really only makes sense for s > 0; for x ≤ 0 the integral does not converge.

Example 28.2. If

f(x) = sin(ax)(28.4)

then, integrating by twice by parts,

L[f ](s) =

∫
∞

0
sin(ax)e

−sx dx

= limN→∞

(
e−sx

1

a
cos(ax)

)∣∣N
0

+
s

a

∫
∞

0
e−sx cos(ax) dx

=
1

a
+

s

a

∫
∞

0
e−sx cos(ax) dx

=
1

a
+ limN→∞

s

a

(
−

1

a
e−sx sin(ax)

)∣∣N
0
−

s
2

a2

∫
∞

0
e−sx sin(ax) dx

=
1

a
+ 0−

s
2

a2
L[f](s) ,

(28.5)

we find

L[f ](s) =
a

1 +
s2

a2

=
a

a2 + s2
.(28.6)

(If s ≤ 0, the integral on the first line does not converge, so L[f ](s) is only defined for s > 0.)

Example 28.3. If f(x) = ebx, then

L[f] =

∫
∞

0
e
bt
e
−st

dt

=
∫
∞

0
e
(b−s)t

dt

=
1

b−s
e
(b−s)t

∣
∣
∣
∞

0

=
1

s−b
(if s > b)

(28.7)

(If s ≤ b then the integral does not converge.)

The following theorem explains under what conditions we can expect the Laplace transform of a function

f(x) to exist.
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28. THE LAPLACE TRANSFORM 2

Theorem 28.4. Suppose that f(x) is a piecewise continuous function for 0 ≤ t ≤ A and there exist constants

K,a,M such that

|f(t)| ≤ Ke
at

, ∀ t > M > 0 .(28.8)

Then the Laplace transform L[f ] defined by

L[f](s) =

∫
∞

0

f(t)e−st
dt(28.9)

exists for all s > a.

The condition (28.8) is a rather moderate “growth” condition on the function f(x); it says that for large

enough t, |f(t)| grows no faster than an exponential function of the form Keat. This condition is easily
satisfied by any polynomial function of x.

Theorem 28.5. Properties of the Laplace Transform

(i) Suppose f1(x) and f2(x) are two functions satisfying the hypotheses of Theorem 6.2. Then if g(x) =

c1f1(x) + c2f2(x), L[g] exists and

L[g](s) = c1L[f1](s) + c2L[f2](s) .(28.10)

(ii) Suppose that f is continuous and that both f and its derivative f
′ satisfy the hypotheses of Theorem

6.2. Then L[f ′](s) exists for s > a and moreover

L[f
′

] = sL[f]− f(0) .(28.11)

(iii) Suppose that f and its derivatives f ′, . . . , f (n−1) are continuous and satisfy the hypotheses of Theorem
6.2. Then L[f

(n)
](s) exists for s > a and

L[f
(n)

](s) = s
n

L[f ](s) − s
n−1

f(0) − s
n−2

f
′

(0)− · · · − sf
(n−2)

(0) − f
(n−1)

(0) .(28.12)

Proof of (i).

This follows from the linearity property integration:

L[c1f1 + c2f2](s) =
∫
∞

0
(c1f1(x) + c2f2(x)) e−sx

dx

= c1

∫
x

f1(x)e−sx
dx + c2

∫
x

f2(x)e−sx
dx

= c1L[f1](s) + c2L[f2](s)

(28.13)

Proof of (ii).

Integrating by parts one finds

L[f ′](s) =
∫
∞

0
e
−st

f
′(t)dt

= e
−st

f(t)|
∞

0
−

∫
∞

0
(−se

−st) f(t)dt

= 0− f(0) + s
∫
∞

0
e
−st

f(t)dt

= sL[f ]− f(0) .

(28.14)

Similarly, (iii) is proved by integrating by parts repeatedly.


