LECTURE 27

Series Solutions about Regular Singular Points

Let's now consider the differential equation

(27.1)
$$2x^2y'' - xy' + (1+x)y = 0$$

This equation evidently has a regular singular point at x = 0. We will look for a solution around x = 0 by making an ansatz for y(x) by combining our ansatz for power series solutions about regular points with the ansatz we made for Euler type equations. More explicitly, we shall take

(27.2)
$$y(x) = x^r \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{n+r} \quad .$$

We can suppose without loss of generality that $a_0 \neq 0$; i.e., we assume r to be chosen such that the first nonzero term in the series is $a_o x^r$. Plugging (27.2) into (27.1) yields

$$(27.3) 0 = 2x^2 \sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n-2} - x \sum_{n=0}^{\infty} (r+n)a_n x^{r+n-1} + (1+x) \sum_{n=0}^{\infty} a_n x^{r+n} = \sum_{n=0}^{\infty} 2(r+n)(r+n-1)a_n x^{r+n} - \sum_{n=0}^{\infty} (r+n)a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+1} = \sum_{n=0}^{\infty} (2(r+n)(r+n-1) - (r+n) + 1)a_n x^{r+n} + \sum_{n=1}^{\infty} a_{n-1} x^{r+n} = (2r)(r-1) - r + 1)a_0 + \sum_{n=1}^{\infty} ((2(r+n)(r+n-1) - (r+n) + 1)a_n + a_{n-1})x^{r+n}$$

Hence, we need

(27.4)
$$0 = (2r)(r-1) - r + 1 = 2r^2 - 3r + 1$$

(27.5)
$$0 = a_{n-1} + (2(r+n)(r+n-1) - (r+n) + 1)a_n$$

The first relation is a quadratic equation for r. It is called the **indicial equation** for (27.1). Since

(27.6)
$$2r^2 - 3r + 1 = (2r - 1)(r - 1)$$

we must have

(27.7)
$$r = \frac{1}{2}, 1$$

The second equation (27.5) furnishes a recursion relation that allows us to fix all coefficients a_n in terms of a_o and r.

Setting $r = \frac{1}{2}$ we have

(27.8)
$$0 = a_{n-1} + \left(2(\frac{1}{2}+n)^2 - 3(\frac{1}{2}+n) + 1\right)a_n \\ = a_{n-1} + \left[n(2n-1)\right]a_n$$

 \mathbf{SO}

(27.9)
$$a_n = \frac{-a_{n-1}}{n(2n-1)}$$

Thus,

$$\begin{array}{rcl} a_1 &=& \frac{-a_0}{(1)(2-1)} = -a_0\\ a_2 &=& \frac{-a_1}{(2)(4-1)} = \frac{a_0}{6}\\ a_3 &=& \frac{-a_2}{(3)(6-1)} = \frac{-a_0}{90} \end{array}$$

So one solution would be

(27.11)
$$y_1(x) = a_0 x^{1/2} \left(1 - x + \frac{1}{6} x^2 - \frac{1}{90} x^3 + \cdots \right)$$

When r = 1 we have

(27.12)
$$0 = a_{n-1} + (2(1+n)^2 - 3(1+n) + 1) a_n$$

or

(27.13)
$$a_n = \frac{-1}{2(1+n)^2 - 3(1+n) + 1} a_{n-1} = \frac{-a_{n-1}}{n(2n+1)}$$

 \mathbf{So}

$$\begin{array}{rcl}
a_1 &=& \frac{-a_0}{1(2+1)} = -\frac{a_0}{3} \\
a_2 &=& \frac{-a_1}{2(4+1)} = \frac{a_0}{30} \\
a_3 &=& \frac{-a_2}{3(6+1)} = -\frac{a_0}{630}
\end{array}$$

Thus, a second solution of (27.1) would be

(27.15)
$$y_2(x) = a_o x \left(1 - \frac{1}{3}x + \frac{1}{30}x^2 - \frac{1}{630}x^3 + \cdots \right)$$

The general solution of (27.1) will be a linear combination of $y_1(x)$ and $y_2(x)$:

(27.16)
$$y(x) = c_1 x^{1/2} \left(1 - x + \frac{1}{6} x^2 - \frac{1}{90} x^3 + \dots \right) + c_2 x \left(1 - \frac{1}{3} x + \frac{1}{30} x^2 - \frac{1}{630} x^3 + \dots \right)$$

In summary, to find a solution of (27.1), we

- 1. Assume there is a solution of the form $y(x) = x^r \sum_{n=0}^{\infty} a_n x^n$, with $a_0 \neq 0$.
- 2. Plug this expression for y(x) into the differential equation and set the total coefficients of each power of x equal to zero. This lead to
 - (i) a quadratic equation for r (the indicial equation)
 - (ii) a set of recursion relations relating the coefficients a_n
- 3. Find the two roots r_1 and r_2 of the indicial equations, and then, for each root r_i used the recursion relations to express all the coefficients a_n in terms of a_o .
- 4. Write down a corresponding solution for each root $y_i(\mathbf{x})$ for each root r_i of the indicial equation.
- 5. Write down the general solution as

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$
.

WARNING: This technique works produces two linearly independent solutions only when:

- (i) There are two distinct roots \mathbf{r}_1 and \mathbf{r}_2 of the indicial equation.
- (ii) The difference $\mathbf{r}_1 \mathbf{r}_2$ is not an integer.

See Sections 5.7 and 5.8 of the text for a discussion of what happens and how to procede when these criteria are not meet.