
LECTURE 27

Series Solutions about Regular Singular Points

Let’s now consider the differential equation

2x2y′′
− xy

′ + (1 + x)y = 0 .(27.1)

This equation evidently has a regular singular point at x = 0. We will look for a solution around x = 0 by

making an ansatz for y(x) by combining our ansatz for power series solutions about regular points with the

ansatz we made for Euler type equations. More explicitly, we shall take
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We can suppose without loss of generality that a0 �= 0; i.e., we assume r to be chosen such that the first

nonzero term in the series is aox
r. Plugging (27.2) into (27.1) yields
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Hence, we need

0 = (2r)(r − 1)− r + 1 = 2r
2
− 3r + 1(27.4)

0 = an−1 + (2(r + n)(r + n− 1) − (r + n) + 1) an(27.5)

The first relation is a quadratic equation for r. It is called the indicial equation for (27.1). Since

2r
2
− 3r + 1 = (2r − 1)(r − 1)(27.6)

we must have

r =
1

2
,1(27.7)

The second equation (27.5) furnishes a recursion relation that allows us to fix all coefficients an in terms of

ao and r.

Setting r = 1

2
we have
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an =
−an−1

n(2n− 1)
(27.9)
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Thus,

a1 = −a0
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=
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So one solution would be

y1(x) = a0x
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When r = 1 we have
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Thus, a second solution of (27.1) would be
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The general solution of (27.1) will be a linear combination of y1(x) and y2(x):
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In summary, to find a solution of (27.1), we

1. Assume there is a solution of the form y(x) = x
r
∑
∞

n=0
anx

n, with a0 �= 0.

2. Plug this expression for y(x) into the differential equation and set the total coefficients of each power

of x equal to zero. This lead to

(i) a quadratic equation for r (the indicial equation)

(ii) a set of recursion relations relating the coefficients an

3. Find the two roots r1 and r2 of the indicial equations, and then, for each root ri used the recursion

relations to express all the coefficients an in terms of ao.

4. Write down a corresponding solution for each root yi(x) for each root ri of the indicial equation.

5. Write down the general solution as

y(x) = c1y1(x) + c2y2(x) .

WARNING: This technique works produces two linearly independent solutions only when:

(i) There are two distinct roots r1 and r2 of the indicial equation.

(ii) The difference r1 − r2 is not an integer.

See Sections 5.7 and 5.8 of the text for a discussion of what happens and how to procede when these criteria

are not meet.


