LECTURE 25

Differential Equations with Polynomial Coefficients

In the last lecture we considered a number of examples of differential equations of the form
(25.1) Plx)y" +Qz)y’ + R(z)y =0

and looked for solutions of the form
(25.2) y(@) = an(x—=,)"
n=0

Before considering one more example, let me first articulate the general procedure.

Step 1. Substitute (25.2) into (25.1). This will produce an equation of the form

0 = % s n(n—Dan P(x) (x — 2,)" 2 4+ 300 g nan Qz) (x — ,)" '
(25.3) Z+Zf§=0 an}b(x) ((x )—(1)n ) > (@) ( )

Step 2. Unfortunately, depending on the nature of the polynomials, it may happen that none of three series
in (25.3) is a power series in (z — x,). For example, if P(z) = 2 and z, = 1, then the first series is

(25.4) > n(n—1ana® (z - 1)

which is not a power series (i.e., an expression of the form > b,(r — 1)® with each b, a constant). To
convert, the series in (25.3) into to power series we must replace the polynomials P(z), Q(zx), and R(z) with
their Taylor expansions about x, = 1. If we set

Pn i (o)
(25.5) G = gt (@)
o= aiige (To)

we can write

Plx) =3 Zopn (@ —,)"
(25.6) Q@) =320 (x — )",
R(z) = 3207 (& —20)"

Actually, since polynomial of degree D can have at most D non-vanishing derivatives, each of the Taylor
expansions (25.6) will terminate after a finite number of terms:

P(a) = S (o —2)"
(25.7) Q) =375 gn (x — 2

R(x) = X ra (v = 20)"
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where dp, dg, and dg are the degrees of the polynomials P(x), Q(z), and R(X). Inserting the expression
(25.7) into (25.3) we get

0 = Y2, Z?io n(n — Da,p, (x — xO)n+i72

+> oto Zgio N (2 — )"
+ D ot0 Yoimo Gl (T — %)n+z

(25.8)
= T Salon(n— Danpa (= 2,)""
+3i2 Z?:o Nanqn (T — xa)m_FI
i .

Y S an T (T — 26)" T

or
0 = Zf:o n(n —1)poay, (z — 9‘%7)”72 oot Zf:o n(n —1)papan (dx — gco)m_dpi2

(25'9) + ZZOZO NGgoln (.’,U - xo)n +---+ ZSLO:O nquan (.’,U — xa)m' @

+ ZSLO=0 roan (T — xa)n et ZZO=O Tar0n (T — xa)n+dR

Step 3. The next step is to collect all the terms consisting of like factors of (z — xO)i. To accomplish this

we shift the summation index n in each series in (25.9) so that the &' term in the new series has (z — xO)k
as a factor. One obtains

(25.10)
0 = 52 ,(k+2)(k+ )potpen (x—2,)" + -
b 0 g (B2 —dp)(k+ 1 — dp)paparia—dp (@ — 3,)"
+ 2o (B + 1o+ (x — 2) 4+ Zl?;fud@ (k+1—dg) qigarrt1-dg (T — )
+ Y otk (2 — 20) - Y a0k (@ — 1)

k

Here one must be a bit careful. Notice that the various series appearing in the above equation do not have
the same initial value of k. Before consolidating the various series in (25.10) in a single series we must make
sure they all start off at the same value of k. I will discuss this point momentarily with an example. But
certainly for k large enough all the series in (25.10) will contribute terms proportional to (z — xa)k. One
can then read off from (25.10) the general recursion relation

0 = (]C—|—2)(]€—|—1)pOCLk+2—|—"'(]C+2—dp)(]€—|—1—dp)€bk+2,dp
(25.11) +(k+1)qOCLk+1 +"'+(k+1—dQ)quCLk+1,dQ
+roGr + -+ Tdp0k—dg

which is valid for & > Maz {—2+dp,—1+ dg,dr}. Actually, we can use this relation for all & so long as
we consistently define

(25.12) a;=0 , ifi<O0.

Step 4. Use the recursion relation (25.11) to express all the coefficients a,, in terms of ap and a; (you may
also need to use the relations 0 = a_1 =a_2 = a_3--- coming from (25.12)).

EXAaMPLE 25.1. Find a power series solution of

(25.13) %y +(x4+1)y=0

about the point x, = 1.

Plugging

(25.14) y(@) = an(x—1)"
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into (25.13) yields

(25.15) 0=> nn—1az*(@—1)"2+> an(x+1)(x—1)"
n=0 n=0
Now the Taylor expansions of f(z) = 22 and g(z) = z + 1 about z, = 1 are
2 = 1+2@—1)+(x—1)2
(25.16) s+l = 24 (x—1)
Plugging the right hand sides of (25.16) into (25.15) yields
0 = Yonn—1a, (1+2(x—1)+ (x—1)%) (x — 1) 2

+¥nsoon 2+ (@ — 1)) (= 1)"

(25.17)

= Yason(n—Dan(z—1)" 2+ 377 2n(n — Dag(z — 1)" !
+ 3o mn = Dan(x = 1)" + 3777 200 (z — )" + 3770 an(z — 1)
We now shift the summation indices in each series so that in the &*” term, (x—1) appears to the k" power.
One gets
0 = 04043 (k+2)(k+ Dapsale — 1)F 40+ 555, 20k + k(e — Vg (w — 1)*
+ ko bk — Dag(x — )" + 3752 205 (v — )F + 3752, e (z = 1
Unfortunately, the last series begins with & = 1, instead of & = 0. This, however, is easy to remedy; we
simply a_; = 0, so that

(25.19) Zak 11:—1 —O—Zak 1:)0—1 Zak 11:—1

Thus, having arranged things so that all series start ofl at the same pomt k = 0 and we now consolidate
the right hand side of (25.18) into a single series:

0 = S 2o((k+2)(k+ Dagse + 2(k + Dkagsr + k(k — Dag, + 2a; + ag—1) (x — 1)*
Soreo ((k+2)(k + Dapto + 2k(k + Dagrr + (% — k +2)ap + ap—1) (x — 1)*

The demand that the total coefficient of (z — l)k vanish then implies
—2k(k+ 1)ap+1 — (/C2 —k+2)ay —ap_1
(k+2)(k+1)

(25.18)

(25.20)

(25.21) ap1+2 =

Thus, given that a_; = 0, we have

_ _0-20-0 _
S 5
—2)(25.3)45— (25.2)a; —a —7aq—2a;
(25.22) az = (25.5)(25.2) — = 6
(—4)(25.3)as—4as—a1 __ (l4ap—4ai1+4ao—ai) __ _ 18ag—5a
g (25.4)(25.3) = 12 12
Thus, to the order of (z — 1)* the general solution of (25.13) is
y(r) = ao+ai(r—1)—ap(x—1)% — Tecz2n EQ“ (x—1)3

_|_18_@01;ﬂ1_(x_1)4+...
(25.23)
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