
LECTURE 23

Solutions via Power Series

0.1. Introduction. Before discussing power series it is instructive to first admit up front the ludicrous

strategy we have employed thus far to find solutions to second order linear differential equations. At this

point only there are only two classes of equations that we can solve

• second order linear with constant coefficients

• Euler type equations

and our procedure for constructing a solution has been to first guess what the solution should look like

(y(x) = eλx for linear equations with constant coefficients, and y(x) = xr for Euler type equations) and

then plug in to the differential equation to find a choice of λ or r that actually makes our given guess a

solution. Such a strategy surely cannot work in any generality, because in general we have no clue as to

what the solution of a second order equation looks like.

Remarkably, we can employ this same strategy with great success, if we are sufficiently general in guessing

what a solution should look like. Here’s the basic idea in a nutshell. Every smooth function has a unique

representation in terms of its Taylor series about a given point xo:

f(x) =

∞∑

n=0

f (n) (xo)

n!
(x− xo)

n(23.1)

= f(xo) + f ′(xo)(x− xo) +
1

2
f ′′(xo)(x− xo)

2 +
1

6
f ′′′(xo)(x− xo)

3 + · · ·

Just as we did for the case of first order equations we can readily compute the Taylor expansion of a second

order differential equation with initial conditions.

Example 23.1. Find the first five terms of the Taylor expansion about x = 0 of the solution to

y
′′ +2xy′ + y = 0

y(0) = 1

y
′(0) = 0

The Taylor expansion of the solution y(x) about x = 0 is given by the formula

y(x) = y(0) + y
′(0)x+

y
′′(0)

2!
x
2 +

y
′′′(0)

3!
x
3 +

y
iv(0)

4!
x
4 + · · ·

To make this explicit, we need to figure out numerical values for y(0), y′(0), y′′(0), . . . . Now the values of

y(0) and y
′(0) are detemined by the initial conditions

y(0) = 1

y
′(0) = 0

The differential equation itself, evaluated at x = 0 gives us the value of y′′(0):

y
′′(0) = (−2xy′ − y) |x=0 = 0− y(0) = −1

1
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To get a value for y
′′′(0) we differentiate the differential equation and evaluate the result at x = 0:

y
′′′(0) = (−2y′(x)− 2xy′′(x) − y

′(x)) |x=0 = 0− 0− 0 = 0

To get a value for y
iv(0) we differentiate the differential equation again:

y
iv(0) =

(
−2y

′′
(x)− 2y

′′
(x)− 2xy

′′
′

(x) − y
′′
(x)

)
|x=0 = −2(−1)− 2(−1)− 0− (−1) = 5

Thus, to order x4

y(x) = y(0) + y
′
(0)x+

y
′′(0)

2!
x
2
+

y
′′′(0)

3!
x
3
+

y
iv(0)

4!
x
4
+ · · ·

= 1 + 0x−
1

2
x
2 −

0

6
x
3
+

5

24
x
4
+ · · ·

= 1−
1

2
x
2
+

5

24
x
4
+ · · ·

Note that this Taylor series technique is exactly the same as the one we discussed for first

order differential equations. What we shall be doing in the next couple of weeks is system-

atizing this procedure for the case of second order linear differential equations. In doing so,

we will not only be able to write down the Taylor expansions of solutions satisfying given

initial conditions, but also the Taylor expansions of general solutions as well.

Let’s condense our notation a bit by setting

a
n
=

f
(n)

(xo)

n!
(23.2)

so that Taylor expansion can be expressed as

f(x) =

∞∑

n=0

a
n
(x− x

o
)n(23.3)

If we had a formula for f(x) then obviously we could compute each of the coefficients a
n
in its Taylor

expansion using equation (23.2). On the other hand, if we have formulas for all the coefficients an then can

write down the Taylor expansion of f(x) and so we have effectively determined f(x). The point of all this

is that every smooth function can be expressed in the form (23.3) and by determining all the values of the

constants an you effectively specify f(x).

Now I can state our strategy for solving a genereal second order linear differential equation

y′′ + p(x)y′ + q(x)y = 0

We shall assume that our solution is a smooth function and so it has a Taylor expansion about a given point

xo:

y(x) =

∞∑

n=0

an(x− x0)
n

We’ll then plug this expression for y(x) into the differential equation and try to determine what this implies

about the coefficients a
n
. What we’ll find is that the differential equation will effectively determine all

the coefficients an in terms of the first two; and that the first two coefficients, a0 and a1, are determined

completely by intitial conditions at xo. Thus, we will be able to solve second order linear equations in the
sense that we can construct the Taylor series representations of their solutions.

Before we can undertake this program in ernest we had better first review the basic theory concerning
expressiions of the form

∞∑

n=0

an(x− xo)
n
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0.2. Review of Power Series. Recall that a formal power series about x
o
is a formal expression

of the form

∞∑

n=0

an(x− xo)
n = a0 + a1(x− xo) + a2(x− xo)

2 + · · · .(23.4)

The reason for the qualification formal is that an expression of this form (as it stands) really doesn’t make

any mathematical sense: there is no way one can actually carry out the infinite summation implied by the

notation.

However, using the notion of limits one can sometimes prescribe some real mathematical meaning to formal

power series.

Definition 23.2. A formal power series
∑
∞

n=0
an(x− xo)

n
converges at a point x if the limit

lim
N→∞

N∑

n=0

an(x− xo)
n

(23.5)

exists.

Definition 23.3. A formal power series
∑
∞

n=0
an(x− xo)

n
is said to converge absolutely if the limit

lim
N→∞

N∑

n=0

|an(x− xo)
n|(23.6)

exists.

We recall that absolute convergence implies convergence but that convergence does not necessarily guarantee

absolute convergence.

Theorem 23.4. If a formal series
∑
∞

n=0
an(x−xo)

n
converges for some x �= 0, say x = x1, then the series

converges absolutely for all x such that

|x− x
o
| < |x− x1| .

The largest number R such that a power series

∞∑

n=0

an(x− xo)
n(23.7)

converges for all x ∈ (xo −R, xo +R) (or equivalently, for all x such that |x−xo| < R) is called the radius

of convergence of the power series.

The following test is very useful in determining whether a given power series converges.

Theorem 23.5. (Ratio Test.) A formal series
∑
∞

n=0
an(x− xo) converges absolutely if

1 > lim
n→∞

∣
∣
∣
∣

an+1(x− xo)
n+1

an(x− x0)
n

∣
∣
∣
∣
= |x− x

o
| lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣

.(23.8)

This test implies that the radius of convergence of
∑
∞

n=0
an(x− xo)

n is given by

R =
1

limn→∞

∣
∣
∣
a
n+1

an

∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

an

an+1

∣
∣
∣
∣

(23.9)

Example 23.6. Find the radius of convergence of the following power series.
∞∑

n=0

n

2n
(x− 1)

n

.(23.10)
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Well, we have a
n
=

n

2n
, so

R = lim
n→∞

∣
∣
∣
∣

n

2n

n+1

2n+1

∣
∣
∣
∣
= lim

n→∞

2
n

n +1
= 2 lim

n→∞

n

n +1
= 2 .(23.11)

We conclude that the series converges for all x such that |x− 1| < 2, i.e., for all x ∈ (−1, 3).

Now if a power series
∑
∞

n=0
an(x−xo)

n has a radius of convergence R then for all x ∈ (xo −R,xo +R) we

have a well- defined function of x; viz.,

f(x) = lim
N→∞

N∑

n=0

an(x− xo)
n

.(23.12)

This function is not only continuous within the interval (xo −R,xo +R), all of its derivatives f (n) exist as

well. In fact, the derivative of f is the function defined by

f
′

(x) = lim
N→∞

N∑

n=0

nan(x− xo)
n−1

(23.13)

which is also defined for all x ∈ (xo −R, xo +R).

Theorem 23.7. (Taylor’s Theorem.) Suppose that f is continuous and has derivatives of all orders in

a neighborhood of xo, then f can be expressed as a power series

f(x) =

∞∑

n=0

an(x− xo)
n

(23.14)

with

an =
f
(n)(xo)

n!
.(23.15)

There is one last thing I wish to review before showing how power series representations can be used to

solve differential equations; that is, how to transform a power series by shifting the index of summation.

Example 23.8. The following power series are equivalent.

∑
n=0

an(x− xo)
n

=
∑

i=0
ai(x− xo)

i

=
∑

j=2
aj−2(x− xo)

j−2

=
∑

k=−2
ak+2(x− xo)j + 2

(23.16)

Thus, we are free to re-label and shift the summation index as long as we do it everywhere consistently

(much like a change of variable x→ x+ a when integrating).

Definition 23.9. We shall say that a power series is in standard form when the n
th

term is of the form

an(x− xo)
n
.

Example 23.10. Put the following power series in standard form:

∞∑

n=0

n(n− 1)xan(x− 2)
n−2

.(23.17)

The first thing we must do is make sure that all terms in the series involve only powers of x−2. We therefore

replace the factor x by

x = (x− 2) + 2 .(23.18)

Then (23.17) becomes
∑
∞

n=0
n(n− 1)xa

n
(x− 2)n−2 =

∑
∞

n=0
n(n− 1) ((x− 2) + 2) a

n
(x− 2)n−2

=
∑
∞

n=0
n(n− 1)an(x− 2)n−1

+
∑
∞

n=0
2n(n− 1)an(x− 2)n−2

(23.19)
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In order to put the two series on the right hand side in standard form, we shift the summation index to

k = n−1 in the first series and shift the summation index to k = n−2 in the second index. We thus obtain

∑
∞

n=0
n(n− 1)xan(x− 2)n−2 =

∑
∞

k=−1
(k +1)(k)ak+1(x− 2)k

+
∑
∞

k=−2
2(k + 2)(k +1)ak+2(x− 2)k

= 0 +
∑
∞

k=0
k(k + 1)ak+1(x− 2)k

+0 + 0 +
∑
∞

k=0
2(k +2)(k + 1)ak+2(x− 2)k

=
∑
∞

k=0
(k(k +1)ak+1 +2(k + 1)(k + 2)ak+2) (x− 2)k

(23.20)

The expression on the far right is now in the standard form

∞∑

k=0

bk(x− xo)
k

(23.21)

with

xo = 2 ,

bk = k(k + 1)ak+1 + 2(k +1)(k +2)ak+2 .
(23.22)

1. Summary: Manipulating Power Series

1.1. Differentiating Power Series. If

f(x) =
∞∑

n=0

an (x− xo)
n

then


