
LECTURE 22

Higher Order Linear Equations

We now turn to the problem of constructing solutions of nth order linear differential equations; i.e., differ-

ential equations of the form

dny

dxn
+ p1(x)

dn−1y

dxn−1
+ · · · + pn−1(x)

dy

dx
+ pn(x)y = g(x) .(22.1)

Theorem 22.1. If the functions p1(x), p2(x), . . . , pn(x) and g(x) are continuous and differentiable on an

open interval α < x < β, then there exists one and only one function y(x) satisfying (22.1) on the interval

α < x < β and the initial conditions

y(xo) = yo
dy

dx
(xo) = y′

o

.

.

.

d
n−1

y

dxn−1
(xo) = y

(n−1)
.

(22.2)

Recall that if y1 and y2 were solutions of a second order linear differential equation

y
′′ + p(x)y′ + q(x)y = 0 .(22.3)

and

W [y1, y2](x) = y1(x)y
′

2(X)− y
′

1
(x)y2(x) �= 0(22.4)

then every solution (22.3) can be expressed as

y(x) = c1y1(x) + c2y2(x)(22.5)

for some choice of constants c1 and c2.

The situation for nth order linear equations is similar; however the explicit expression for the corresponding

Wronskian is a bit tedious to write down for large n.

Definition 22.2. A set of functions {φ
1
, φ

2
, . . . , φ

n
} is said to be a linearly independent set on the interval

I = (α,β) if there exists no choice of constants c1, . . . , cn such that

c1φ1(x) + c2φ2(x) + · · ·+ c
n
φ
n
(x) = 0 , ∀x ∈ I(22.6)

except c1 = c2 = · · · = cn = 0.

Theorem 22.3. A set of (differentiable) functions {φ
1
, φ

2
, . . . , φ

n
} is linearly independent on an interval

I if and only if

0 �= W [φ
1
, . . . , φ

n
](x) ≡ Det




φ1(x) φ2(x) · · · φ
n
(x)

φ
′

1(x) φ
′

2(x) · · · φ
′

n
(x)

.

.

.

.

.

.

.

.

.

φ
(n−1)
1 (x) φ

(n−1)
2 (x) · · · φ

(n−1)
n

(x)


(22.7)

on I .
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Example: Three differentiable functions f(x), g(x), h(x) are linearly independent if and only if

0 �=W [f, g, h](x) = f(x)g′(x)h′′(x) + g(x)h′(x)f ′′(x) + h(x)f ′(x)g′′(x)

−g(x)f ′(x)h′′(x)− f(x− ”m)h′(x)g′′(x) − h(x)g′(x)f ′′(x)
(22.8)

Theorem 22.4. Suppose the functions p1(x), p2(x), . . . , pn(x) are continuous (and differentiable) on the

interval α < x < β, and the functions y1(x), y2(x), . . . , yn(x) are solutions of

d
n
y

dxn
+ p1(x)

d
n−1

y

dxn−1
+ · · · + pn−1(x)

dy

dx
+ pn(x)y = 0 .(22.9)

Then if W [y1, y2, . . . , yn](x) �= 0 at least one point in α < x < β, then any solution of (22.9) can be

expressed as a linear combination of the solutions y1(X), y2(x), . . . , yn(x).

1. Solutions of the Non-homogeneous Problem

Consider a non-homogeneous n
th order linear differential equation of the form

d
n
y

dxn
+ p1(x)

d
n−1

y

dxn−1
+ · · · + pn−1(x)

dy

dx
+ pn(x)y = g(x)(22.10)

and suppose y1, y2, . . . , yn is a set of n linearly independent solutions of the corresponding homogeneous

problem. If yp(x) is any particular solution of (22.10), then the general solution of (22.10) can be written

as

y(x) = yp(x) + c1y1(x) + c2y2(x) + · · · + cnyn(x) .(22.11)

In an initial value problem the constants c1, . . . , cn are fixed uniquely by the set of initial conditions

y(xo) = yo

y
′(xo) = y

′

o

.

.

.

y
(n−1)(xo) = y

(n−1)
o .

(22.12)

2. Linear Differential Equations with Constant Coefficients

Consider a differential equation of the form

any
(n)

(x) + an−1y
(n−1)

(x) + · · ·a1y
′
(x) + a0y(x) = 0 .(22.13)

When n = 2 we know that a solution of this equation can be solved by making the ansatz

y(x) = e
λx

(22.14)

plugging in and solving for λ. We can do the same thing for general n. Plugging (22.14) into (22.13) yields

0 =
(
anλ

n + an−1λ
n−1 + · · · + a1λ+ a0

)
e
λx = 0(22.15)

and so a solution can be found for each root of the equation

anλ
n + an−1λ

n−1 + · · · + a1λ+ a0 = 0 .(22.16)

Solutions of n
th

order polynomial equations Theorem: Let P (λ) be a polynomial with complex

coefficients of degree n:

P (λ) = anλ
n

+ an−1λ
n−1

+ · · ·+ a1λ + a0 , an, . . . , a0 ∈ C.(22.17)

If r is a root of P (λ) = 0, then (λ− r) is a factor of P (λ); that is to say, there exists a polynomial Q(λ)

such that

P (λ) = (λ− r)Q(λ) .(22.18)
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Corollary: If {ri, . . . , rp} is the set of roots of a polynomial equation

P (λ) = λ
n

+ an−1λ
n−1

+ · · · + a1λ + a0 = 0(22.19)

then, there exists a unique set of positive integers {m1, . . . ,mp} such that

P (λ) = (λ− r1)
m1

(λ− r2)
m2

· · · (λ − rp)
mp

.(22.20)

Note that necessarily m1 +m2 + · · · +mp = n. The interger mi corresponding to the i
th root ri is called

the multiplicity of the root ri.

Theorem: If P (λ) is a polynomial with real coefficients and r = α + iβ ∈ C is a root of P (λ), then
α
∗ = α− iβ is also a root of P (λ).

Connection with Linear Homogeneous Differential Equations

Consider a differential equation of the form

y
(n)

+ an−1y
(n−1)

+ · · ·+ a1y
′
+ a0y = 0.(22.21)

As noted above, if we make the substitution y(x) = e
λx, we see that this differential equation for y(x) is

equivalent to the following algebraic equation for λ.

λ
n

+ an−1λ
n−1

+ · · ·a1λ + a0 = 0(22.22)

Let r be a root of this polynomial equation. There are four basic cases.

(i) r is a distinct real root.

In this case, we have a distinct solution of the form

y(x) = e
rx

.(22.23)

(ii) r = α± iβ are distinct complex roots.

In this case we have two distinct solutions

y1(x) = e
αx

cos(βx) , y2(x) = e
αx

sin(βx) .(22.24)

(iii) r is a real root with multiplicity k.

In this case, one can show that the functions

y1(x) = e
rx

y2(x) = xe
rx

.

.

.

yk(x) = x
k−1

e
rx

(22.25)

comprise a set of k linearly independent solutions of (22.13).

(iv) r = α± iβ are complex roots each with multiplicity k.

In this case, one can show that the functions

y1(x) = e
αx cos(βx)

y2(x) = xe
αx cos(βx)

.

.

.

yk(x) = x
k−1

e
αx cos(βx)

yk+1(x) = e
αx sin(βx)

yk+2(x) = xe
αx

sin(βx)

.

.

.

y2k(x) = x
k−1

e
αx sin(βx)

(22.26)

form a set of 2k linearly independent solutions.
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As a polynomial of the form (22.16) always factors as

(x− r1)
k1
· · · (x− ri)

ki
(x− α1 − iβ

1
)
l1
(x − α1 + iβ

1
)
l1

· · ·

(
x− αj − iβ

j

)lj (
x− αj + iβ

j

)lj(22.27)

with

n =

∑
ki +

∑
2lj(22.28)

in this manner one can always write down n linearly independent solutions of (22.13).

Example 22.5. Find the general solution of

y
′′′
− y

′′
− y

′
+ y = 0 .(22.29)

: The characteristic equation for this differential equation is

λ
3
− λ

2
− λ +1 = 0(22.30)

or

(λ− 1)
2
(λ +1) = 0.(22.31)

We thus have a double root at λ = 1 and a single root at λ = −1. The general solution is thus

y(x) = c1e
x

+ c2xe
x

+ c3e
−x

.(22.32)

Example 22.6. Find the general solution of

d
6
y

dx6
+ y = 0 .(22.33)

: In this case the characteristic equation is

λ
6

+ 1 = 0 .(22.34)

Thus, λ must be one of the roots of

λ
6

= −1 = e
iπ

(22.35)

Thus,

λ = ±e±
iπ

6 , e±
iπ

2

= ±
(
cos

(
π

6

)
± i sin

(
π

6

))
,±

(
cos

(
π

2

)
± i sin

(
π

2

))

=

√
3

2
±

i

2
,−

√
3

2
±

i

2
,±i .

(22.36)

So we have 6 distinct roots and

y(x) = c1e

√
3

2
x

cos

(
x

2

)
+ c2e

√
3

2
x

sin

(
x

2

)
+ c3e

−

√
3

2
x

cos

(
x

2

)
+ c4e

−

√
3

2
x

sin

(
x

2

)
+ c5 cos(x) + c6 sin(x)

(22.37)


