LECTURE 22

Higher Order Linear Equations

We now turn to the problem of constructing solutions of n^{th} order linear differential equations; i.e., differential equations of the form

(22.1)
$$\frac{d^n y}{dx^n} + p_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + p_{n-1}(x)\frac{dy}{dx} + p_n(x)y = g(x)$$

THEOREM 22.1. If the functions $p_1(x), p_2(x), \ldots, p_n(x)$ and g(x) are continuous and differentiable on an open interval $\alpha < x < \beta$, then there exists one and only one function y(x) satisfying (22.1) on the interval $\alpha < x < \beta$ and the initial conditions

(22.2)
$$y(x_o) = y_o$$
$$\frac{dy}{dx}(x_o) = y'_o$$
$$\vdots$$
$$\frac{d^{n-1}y}{dx^{n-1}}(x_o) = y^{(n-1)}$$

Recall that if y_1 and y_2 were solutions of a second order linear differential equation

(22.3)
$$y'' + p(x)y' + q(x)y = 0$$

 and

(22.4)
$$W[y_1, y_2](x) = y_1(x)y_2'(X) - y_1'(x)y_2(x) \neq 0$$

then every solution (22.3) can be expressed as

(22.5)
$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

for some choice of constants c_1 and c_2 .

The situation for n^{th} order linear equations is similar; however the explicit expression for the corresponding Wronskian is a bit tedious to write down for large n.

DEFINITION 22.2. A set of functions $\{\phi_1, \phi_2, \ldots, \phi_n\}$ is said to be a linearly independent set on the interval $I = (\alpha, \beta)$ if there exists no choice of constants c_1, \ldots, c_n such that

(22.6)
$$c_1\phi_1(x) + c_2\phi_2(x) + \dots + c_n\phi_n(x) = 0$$
, $\forall x \in I$

except $c_1 = c_2 = \dots = c_n = 0$.

THEOREM 22.3. A set of (differentiable) functions $\{\phi_1, \phi_2, \ldots, \phi_n\}$ is linearly independent on an interval I if and only if

(22.7)
$$0 \neq W[\phi_1, \dots, \phi_n](x) \equiv Det \begin{pmatrix} \phi_1(x) & \phi_2(x) & \cdots & \phi_n(x) \\ \phi_1'(x) & \phi_2'(x) & \cdots & \phi_n'(x) \\ \vdots & \vdots & & \vdots \\ \phi_1^{(n-1)}(x) & \phi_2^{(n-1)}(x) & \cdots & \phi_n^{(n-1)}(x) \end{pmatrix}$$

 $on \ I.$

2. LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Example: Three differentiable functions f(x), g(x), h(x) are linearly independent if and only if

(22.8)
$$0 \neq W[f,g,h](x) = f(x)g'(x)h''(x) + g(x)h'(x)f''(x) + h(x)f'(x)g''(x) - g(x)f'(x)h''(x) - f(x - "m)h'(x)g''(x) - h(x)g'(x)f''(x)$$

THEOREM 22.4. Suppose the functions $p_1(x), p_2(x), \ldots, p_n(x)$ are continuous (and differentiable) on the interval $\alpha < x < \beta$, and the functions $y_1(x), y_2(x), \ldots, y_n(x)$ are solutions of

(22.9)
$$\frac{d^n y}{dx^n} + p_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + p_{n-1}(x)\frac{dy}{dx} + p_n(x)y = 0$$

Then if $W[y_1, y_2, \ldots, y_n](x) \neq 0$ at least one point in $\alpha < x < \beta$, then any solution of (22.9) can be expressed as a linear combination of the solutions $y_1(X), y_2(x), \ldots, y_n(x)$.

1. Solutions of the Non-homogeneous Problem

Consider a non-homogeneous n^{th} order linear differential equation of the form

(22.10)
$$\frac{d^n y}{dx^n} + p_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + p_{n-1}(x)\frac{dy}{dx} + p_n(x)y = g(x)$$

and suppose y_1, y_2, \ldots, y_n is a set of *n* linearly independent solutions of the corresponding homogeneous problem. If $y_p(x)$ is any particular solution of (22.10), then the general solution of (22.10) can be written as

(22.11)
$$y(x) = y_p(x) + c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$$

In an initial value problem the constants c_1, \ldots, c_n are fixed uniquely by the set of initial conditions

(22.12)
$$y(x_{o}) = y_{o}$$
$$y'(x_{o}) = y'_{o}$$
$$\vdots$$
$$y^{(n-1)}(x_{o}) = y^{(n-1)}_{o}$$

2. Linear Differential Equations with Constant Coefficients

Consider a differential equation of the form

(22.13)
$$a_n y^{(n)}(x) + a_{n-1} y^{(n-1)}(x) + \dots + a_1 y'(x) + a_0 y(x) = 0$$

When n = 2 we know that a solution of this equation can be solved by making the ansatz

$$(22.14) y(x) = e^{\lambda x}$$

plugging in and solving for λ . We can do the same thing for general n. Plugging (22.14) into (22.13) yields

(22.15)
$$0 = (a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0) e^{\lambda x} = 0$$

and so a solution can be found for each root of the equation

(22.16)
$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

Solutions of \mathbf{n}^{th} order polynomial equations Theorem: Let $P(\lambda)$ be a polynomial with complex coefficients of degree n:

(22.17)
$$P(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 \quad , \quad a_n, \dots, a_0 \in \mathbb{C}.$$

If r is a root of $P(\lambda) = 0$, then $(\lambda - r)$ is a factor of $P(\lambda)$; that is to say, there exists a polynomial $Q(\lambda)$ such that

(22.18)
$$P(\lambda) = (\lambda - r)Q(\lambda) \quad .$$

Corollary: If $\{r_i, \ldots, r_p\}$ is the set of roots of a polynomial equation

(22.19)
$$P(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0 = 0$$

then, there exists a unique set of positive integers $\{m_1, \ldots, m_p\}$ such that

(22.20)
$$P(\lambda) = (\lambda - r_1)^{m_1} (\lambda - r_2)^{m_2} \cdots (\lambda - r_p)^{m_p}.$$

Note that necessarily $m_1 + m_2 + \cdots + m_p = n$. The interger m_i corresponding to the i^{th} root r_i is called the *multiplicity* of the root r_i .

Theorem: If $P(\lambda)$ is a polynomial with real coefficients and $r = \alpha + i\beta \in \mathbb{C}$ is a root of $P(\lambda)$, then $\alpha^* = \alpha - i\beta$ is also a root of $P(\lambda)$.

Connection with Linear Homogeneous Differential Equations

Consider a differential equation of the form

(22.21)
$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0$$

As noted above, if we make the substitution $y(x) = e^{\lambda x}$, we see that this differential equation for y(x) is equivalent to the following algebraic equation for λ .

(22.22)
$$\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0} = 0$$

Let r be a root of this polynomial equation. There are four basic cases.

(i) r is a distinct real root.

In this case, we have a distinct solution of the form

 $(22.23) y(x) = e^{rx} .$

(ii) $r = \alpha \pm i\beta$ are distinct complex roots.

In this case we have two distinct solutions

(22.24)
$$y_1(x) = e^{\alpha x} \cos(\beta x) \quad , \quad y_2(x) = e^{\alpha x} \sin(\beta x)$$

(iii) r is a real root with multiplicity k.

In this case, one can show that the functions

(22.25)
$$y_1(x) = e^{rx}$$
$$y_2(x) = xe^{rx}$$
$$\vdots$$
$$y_k(x) = x^{k-1}e^{rx}$$

comprise a set of k linearly independent solutions of (22.13).

(iv) $r = \alpha \pm i\beta$ are complex roots each with multiplicity k.

In this case, one can show that the functions

$$(22.26)$$

$$y_{1}(x) = e^{\alpha x} \cos(\beta x)$$

$$y_{2}(x) = xe^{\alpha x} \cos(\beta x)$$

$$\vdots$$

$$y_{k}(x) = x^{k-1}e^{\alpha x} \cos(\beta x)$$

$$y_{k+1}(x) = e^{\alpha x} \sin(\beta x)$$

$$y_{k+2}(x) = xe^{\alpha x} \sin(\beta x)$$

$$\vdots$$

$$y_{2k}(x) = x^{k-1}e^{\alpha x} \sin(\beta x)$$

form a set of 2k linearly independent solutions.

2. LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

As a polynomial of the form (22.16) always factors as

(22.27)
$$(x-r_1)^{k_1} \cdots (x-r_i)^{k_i} (x-\alpha_1-i\beta_1)^{l_1} (x-\alpha_1+i\beta_1)^{l_1} \cdots (x-\alpha_j-i\beta_j)^{l_j} (x-\alpha_j+i\beta_j)^{l_j} \cdots (x-\alpha_j-i\beta_j)^{l_j} (x-\alpha_j+i\beta_j)^{l_j}$$

with

$$(22.28) n = \sum k_i + \sum 2l_j$$

in this manner one can always write down n linearly independent solutions of (22.13).

EXAMPLE 22.5. Find the general solution of

(22.29)
$$y''' - y'' - y' + y = 0 \quad .$$

: The characteristic equation for this differential equation is

(22.30)
$$\lambda^3 - \lambda^2 - \lambda + 1 = 0$$

(22.31)
$$(\lambda - 1)^2(\lambda + 1) = 0$$

We thus have a double root at $\lambda = 1$ and a single root at $\lambda = -1$. The general solution is thus (22.32) $y(x) = c_1 e^x + c_2 x e^x + c_3 e^{-x}$.

EXAMPLE 22.6. Find the general solution of

(22.33)
$$\frac{d^6y}{dx^6} + y = 0$$

: In this case the characteristic equation is

(22.34)
$$\lambda^6 + 1 = 0$$
 .

Thus, λ must be one of the roots of

$$\lambda^6 = -1 = e^{i\pi}$$

Thus,

(22.36)
$$\lambda = \pm e^{\pm \frac{i\pi}{6}}, e^{\pm \frac{i\pi}{2}} \\ = \pm \left(\cos\left(\frac{\pi}{6}\right) \pm i\sin\left(\frac{\pi}{6}\right)\right), \pm \left(\cos\left(\frac{\pi}{2}\right) \pm i\sin\left(\frac{\pi}{2}\right)\right) \\ = \frac{\sqrt{3}}{2} \pm \frac{i}{2}, -\frac{\sqrt{3}}{2} \pm \frac{i}{2}, \pm i \quad .$$

So we have 6 distinct roots and

(22.37)

$$y(x) = c_1 e^{\frac{\sqrt{3}}{2}x} \cos\left(\frac{x}{2}\right) + c_2 e^{\frac{\sqrt{3}}{2}x} \sin\left(\frac{x}{2}\right) + c_3 e^{-\frac{\sqrt{3}}{2}x} \cos\left(\frac{x}{2}\right) + c_4 e^{-\frac{\sqrt{3}}{2}x} \sin\left(\frac{x}{2}\right) + c_5 \cos(x) + c_6 \sin(x)$$