
LECTURE 18

Euler Equations

We are now going to consider how to construct solutions of a slightly broader class of differential equations;

those of the form

x2y′′
+αxy′

+ βy = 0 ,(18.1)

where α and β are constants. Note that the point x = 0 is a regular singular point. A differential equation

of this form is called an Euler equation.

To solve such equations, we make the following ansatz :

y(x) = x
r

.(18.2)

Then

y
′ = rx

r−1

y
′′ = r(r − 1)xr−2(18.3)

and so plugging (18.2) into (18.1) yields

0 = x
2
(
r(r − 1)xr−2

)
+αx

(
rxr−1

)
+ βxr

= (r(r − 1) + αr + β)xr

=
(
r2 + (α− 1)r + β

)
xr .

(18.4)

We can thus ensure that (18.2) is a solution of (18.1) by demanding

r2 + (α− 1)r + β = 0(18.5)

or

r =
1− α±

√
(1−α)2 − 4β

2
.(18.6)

Like that the case of second order differential equations with constant coefficients, we have three different

kinds of solutions, depending on the nature of the quantity inside the square root.

Case (i): (1− α)
2 − 4β > 0.

In this case the number inside the radical is positive, so we find a (real) square root. We end up with two

distinct roots

r+ =
1−α+

√
(1−α)2−4β

2

r
−

=
1−α−

√
(1−α)2−4β

2

(18.7)

and, accordingly, two linearly independent solutions

y1(x) = x
r+ , y2(x) = x

r
−

.(18.8)

The general solution is thus

y(x) = c1x
r+ + c2x

r
−

.(18.9)

Case (ii): (1−α)2 − 4β = 0.

1
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In this case, we only have one distinct root

r =
1− α

2
(18.10)

and so obtain only one distinct solution

y1(x) = x
r = x

1−α

2 .(18.11)

A second linearly independent solution however may be found using reduction of order:

y2(x) = y1(x)
∫
x 1

(y1(t))
2 exp

(
−

∫
t

p(s)ds

)
dt

= x
1−α

2

∫
x

t
−1+α

exp

(
−

∫
t α

s
ds

)
dt

= x
1−α

2

∫
x

t
−1+α

exp (ln |t−α|)

= x
1−α

2

∫
x

t
−1

dt

= x
1−α

2 ln |x| .

(18.12)

So in this case the general solution is

y(x) = c1x
1−α

2 + c2x
1−α

2 ln |x| .(18.13)

Case (iii): (1−α)
2
− 4β < 0.

In this case the quantity inside the radical is negative so the roots of (18.1) are complex numbers. We set

λ =
1−α
2

, µ =

√
4β − (1− α)2

2

(18.14)

so that we can write the roots of (18.1) as

r± = λ ± iµ(18.15)

and write the general solution as

y(x) = c1x
λ+iµ

+ c2x
λ−iµ

.(18.16)

However, we still have to make sense of x raised to a complex power. This is done as follows:

x
λ+iµ

= (exp (ln |x|))λ+iµ

= (exp (ln |x|))λ (exp (ln |x|))iµ

= x
λ
(exp (iµ ln |x|))

= x
λ
(cos(µ ln |x|) + i sin(µ ln |x|))

(18.17)

The real and imaginary parts of this solution will also be solutions, and, in fact, they will constitute a

fundamental set of real-valued solutions to (??). Thus, in this case the general solution will be

y(x) = c1x
λ
cos (µ ln |x|) + c2x

λ
sin (µ ln |x|) .(18.18)

The table below reviews the construction of solutions to Euler type equations and at the same time shows

its similarity with the construction of solutions of 2nd order linear differential equations with constant

coefficients.
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Comparison between Euler-Type Equations and

Equations with Constant Coefficients

Euler-Type Constant Coeffficients

Equation: y
′′ + α

x
y′ + β

x2
y = 0 ay′′ + by′ + cy = 0

Ansatz: y(x) = xr y(x) = eλx

Condition on r, λ: r2 + (α− 1)r + β = 0 aλ
2
+ bλ+ c = 0

r± =
1−α±

√
(α−1)2−4β

2
λ± = −b±√b2−4ac

2a

Case (i) (α− 1)2 − 4β > 0 b2 − 4ac > 0
⇒ y(x) = c1x

r+ + c2x
r
− ⇒ y(x) = c1e

λ+x + c2e
λ
−

x

Case (ii) (α− 1)2 − 4β = 0 b2 − 4ac = 0

r = 1−α

2
λ = −b

2a

⇒ y(x) = c1x
r + c2x

r ln |x| ⇒ y(x) = c1e
λx + c2xe

λx

Case (iii) (α− 1)2 − 4β < 0 b2 − 4ac < 0

r = λ± iµ λ = α± iβ

⇒ y(x) = c1x
λ cos (µ ln |x|) ⇒ y(x) = c1e

αx cos(βx)

+c2x
λ sin (µ ln |x|) +c2e

αx sin(βx)

Example 18.1. x
2
y

′′
− 2xy′ + 2y = 0

Substituting y(x) = x
r into this differential equation yields

r(r − 1)x
r

− 2 (rx
r

) + 2x
r

= 0

or
(
r
2
− r − 2r +2

)
x
r

= 0

so we must have

0 = r
2
− r − 2r +2 = r

2
− 3r + 2 = (r − 2)(r − 1)

Thus, we have r = 2, 1. The general solution is thus

y(x) = c1x
2
+ c2x

1

Example 18.2. x
2
y
′′ + 7xy′ + 9y = 0

Substituting y(x) = x
r into this differential equation yields

r(r − 1)xr

+ 7 (rx
r

) + 9x
r

= 0

or
(
r
2 − r + 7r +9

)
x
r

= 0

so we must have

0 = r
2 − r +7r + 9 = r

2
+ 6r +9 = (r +3)

2

Thus, we have only a single root of the indicial equation r = −3. The general solution is thus

y(x) = c1x
−3
+ c2 ln |x|x

−3
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Example 18.3. x
2
y

′′ + xy
′ + 4y = 0

Substituting y(x) = x
r into this differential equation yields

r(r − 1)x
r

+ (rx
r

) + 4x
r

= 0

or
(
r
2 − r + r + 4

)
x
r

= 0

so we must have

0 = r
2 − r + r +4 = r

2
+4 = (r +2i)(r − 2i)

Thus, we have a pair of complex roots r = 0 + 2i, 0− 2i. The general solution is thus

y(x) = c1x
0
cos (2 ln |x|) + c2x

0
sin (2 ln |x|)

= c1 cos (2 ln |x|) + c2 sin (2 ln |x|)


