LECTURE 17

Homogeneous Equations with Constant Coefficients, Cont’d

Recall that the general solution of a 2" order linear homogeneous differential equation
(17.1) Lyl =y" +p(x)y’ +q(x)y =0

is always a linear combination

(17.2) y(z) = a1y1(z) + caya(2)

of two linearly independent solutions y; and y2, and we’ve seen that if we're given one solution y;(z) we
can compute a second linearly independent solution using the method of reduction of order. We will now
turn to the problem of actually finding a single solution y; (x) of (17.1).

We let us now return to the special case of a homogeneous second order linear differential equation with
constant coeflicients; i.e., differential equations of the form

(17.3) y' +py'+qy=0
where p and ¢ are constant.

We saw in Lecture 11, that one can construct solutions of the differential equation (17.3) by looking for
solutions of the form

(17.4) y(x) = e®

Let us recall that construction. Plugging (17.4) into (17.3) yields
(17.5) 0= +pAe™ + qe* = (X + pA+q) €7

A% pever vanishes we must have

Since the exponential function e
(17.6) M 4ph+q=0

Equation (17.6) is called the characteristic equation for (17.3) since for any X satisfying (17.6) we will
have a solution y(z) = e*® of (17.3).

Now because (17.6) is a quadratic equation we can employ the Quadratic Formula to find all of its roots:

42— 4
(17.7) N4pri+g=0 = A:W .

Note that a root A of (17.6) need not be a real number. Indeed, if p? — 4q < 0, then in order to compute
A via the Quadratic Formula we have to take the square root of a negative number and that forces us into
the realm of complex numbers. We shall postpone temporarily the case when a root X is complex and first
discuss the case when the roots of (17.6) are all real. This requires p? —4q > 0.

Case (i): p* — 49 >0
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Because p? — 4¢ is positive, \/p? — 4q is a positive real number and

—p+ 2_4
)\+ — PP q

(17.8) ;
_ PP -4q
Ao = 2
are distinct real roots of (17.6). Thus,
Arz
Y1 = et
(17.9) = e

will both be solutions of (17.3). Noting that

Wy,y2) = vz —y1v2
— )\76/\+me/\,m _ )\+e/\+me/\,m
(1710) — ()\7 _ )\+) e(/\++/\,)m

3{102*41167%3:

a

is non-zero, we conclude that if p? —4q # 0, then the roots (17.8) furnish two linearly independent solutions
of (17.3) and so the general solution is given by

17.11 Z) = c1e™MT + et
( y

Case (ii): p* —49=0

If p? — 4g = 0, however, this construction only gives us one distinct solution; because in this case Ay = \_.
To find a second fundamental solution we must use the method of Reduction of Order.

* is the solution corresponding to the root

N ZPEVP 49 —p£0 _ —p
2

2 2

So suppose ¥y (r) = e 2

of
Naph—g=0, p*—4¢=0.

Then the Reduction of Order formula gives us a second linearly independent solution

ww) =) [ ﬁ exp [ | —p(t)dt} s

gives us a second linearly independent solution. Plugging in 41 (z) = e 5% and p(t) = p, yields

yo(z) = e%r/mrésfexp [/S —pdt} ds

» 1
— %= _
= e 2 / p— exp [—ps] ds
x
= e’g‘”/ e’ e Pds

x
_ 2
= e?‘”/ds

re 2%

= ay(x)

In summary, for the case when p? — 4g = 0, we only have one root of the characterisitic equation, and
so we get only one distinct solution y;(x) of the original differential equation by solving the characteristic
equation for A. To get a second linearly solution we must use the Reduction of Order formula; however, the
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result will always be the same: the second linearly independent solution will always be z times
the solution y;(x) = ¢ 2% . Thus, the general solution in this case will be

y(r) = cre” 3% 4 egme 3% | if p? —4g=0.
We now turn to the third and last possibility.
Case (iii): p* —4q <0

In this case

(17.12) Vp?—4q

will be undefined unless we introduce complex numbers. But when we set

(17.13) V-1=i

we have

(17.14) VP2 —4g=/(-1)(4g — p?) = V-1/4q — p* = i/4q — p?

The square root on the right hand side is well-defined since 4¢ — p? is a positive number. Thus,

o+ i g — p2
(17.15) Ay = PEWRTE _ 48

2
where
b 4q — p?
17.16 __b _ VAg—p?
(17.16) a=-2 . p=VMEE
will be a complex solution of (17.6) and
(17.17) Y(x) = c1e°7 BT 4 yeow—ibe

would be a solution of (17.3) if we could make sense out the notion of an exponential function with a
complex argument.

Thus, we must address the problem of ascribing some meaning to

(17.18) eortipe
as a function of z. To ascribe some sense to this expression we considered the Taylor series expansion of e*
(17.19) ¢ = l4adoat+gate
. o
= i=0 il

Now although we do not yet understand what e®**%% means, we can nevertheless substitute az + i3 for

x on the right hand side of (17.19), and get a well defined series with values in the complex numbers. One
can show that this series converges for all a, 8 and x. We thus take

az+1 : - 1 : 1
(17.20) ™ = lim Z; —(az +ifz)
which agrees with (17.19) when 8= 0.

One can also show that
(17.21) eortibr — cazpife,
Thus, when p? — 4¢ = 0, we have two complex valued solutions to (17.3)

(17.22) yi(x) = 0T iBT o ya(7) = R 7
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where
—p 4q —p?
17.23 = — =Y 2
(17.23) a=L , p=YH
A general solution of (17.3) would then be
(17.24) y(z) = 1277 4 cpeetF?,

However, this is rarely the form in which one wants a solution of (17.3). One would prefer solutions that
are real-valued functions of x rather that complex-valued functions of z. But these can be had as well,
since if 2 = x + 1y is a complex number, then

— 1 7) —
2
are both real numbers. Applying the Superposition Principle, it is easy to see that if
(17.26) y(x) = e*%e'P®
and
(17.27) y(x) = e "

are two complex-valued solutions of (17.3), then

etBr 4 o—ifa
(17.28) yr(x) = % (y(z) +y(z)) =€ < +2 )
and

etBr _ o—ifa
(17.29) yi(w) = % () —y(z)) =™ <T>

are both real-valued solutions of (17.3).

Let us now compute the series expansion of

(17.30) < 4_26
and
ei;r _ efi;r
17.31
(17.31) %
(17.32)
1 (e e iv) — 1 (1+ (iz) + £ (ix)? + 4 (iz)> + )

+3 (1+ (—iz) + 5 (—ix)? + 5 (—ix)® +- )
= (1—ga?+fat+--)

The expression on the right hand side is readily identified as the Taylor series expansion of cos(z). We thus
conclude

(17.33) cos(x) = = 4‘26
Similarly, one can show that

ei;r _ efi;r
17.34 i =
(17.34) sin(z) = =
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On the other hand, if one adds (17.33) to ¢ times (17.34) one gets

ei;r 4 efi;r ei;r _ efi;r ei;r 4 efi;r 4 ei;r _ efi;r

(17.35) cos(x) +isin(x) = 5 +1 57 = 5 —e
or
(17.36) '™ = cos(x) + isin(x)

Thus, the real part of €' is cos(x), while the pure imaginary part of €' is sin(x).

We now have a means of interpreting the function

(17.37) eoetife
in terms of elementary functions (rather than as a power series); namely,
(17.38) e Tife — gomeifT — oo (cos(Bx) + isin(Br)).
Thus,

Re [ecriB2] = e cos(Bz)

(1739) Im eam+i@m

= e*sin(fx)

I now want to show how (17.33) and (17.34) allow us to write down the general solution of a differential
equation of the form

(17.40) v+ +qu=0 , p?—4¢<0

as a linear combination of real-valued functions.

Now when p? — 4¢ < 0, then

o+ i A — p2
(17.41) Ay = PEWATE 4B

2
are the (complex) roots of the characteristic equation
(17.42) M 4ph4+¢=0

corresponding to (17.40) and
(17.43) Yo (x) = e EP

are two (complex-valued) solutions of (17.40). But since (17.40) is linear, since y+ and y_ are solutions so
are
Yy (2 )+y (z))
a;r—H ;r_|_eo¢;r z@m)
(17.44) N e i
: (72 )
e

vi(z) =

Il
[SIETNIE
2 /\

and

ya(x) = % (y+(x) — Y- (x)),
1 (eam—HEm _ eam715m>

cife _ —iBa
2i

% gin(Bx)

Note that 41 and yo are both real-valued functions.

(17.45)

We conclude that if the characteristic equation corresponding to

(17.46) y'+py +qy=0
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has two complex roots

(17.47) A=at:f

then the general solution is

(17.48) ‘ y(x) = c1%® cos(Bx) + coe®Fsin(fx) . ‘

ExaMPLE 17.1. The differential equation

(17.49) y' =2 — 3y

has as its characteristic equation

(17.50) M2 -3=0

The roots of the characteristic equation are given by

N = 2LVET

(17.51) _— _21

These are distinct real roots, so the general solution is

(17.52) y(x) = 163 4 cpe®

ExaMPLE 17.2. The differential equation

(17.53) y'+ 4y +4y =0

has

(17.54) M 4AA+4=0

as its characteristic equation. The roots of the characteristic equation are given by
N o —4E/1616

(17.55) _ 2

Thus we have a double root and the general solution is

(17.56) y(7) = cre”®® + coze "

ExaMPLE 17.3. The differential equation

(17.57) y'+y +y=0

has

(17.58) M4HA+1=0

as its characteristic equation. The roots of the characteristic equation are
A = —1+/1-4

(17.59) B % j: ; A2L§

and so the general solution is

3 3
(1760) y(,’f;) = cleiém Ccos (%.’IJ) + 026*%;1? sin (%.’IJ)



