
LECTURE 14

Second Order Linear Equations, General Theory

1. Standard Form

A second order linear differential equation is a differential equation of the form

A(x)y
′′
+B(x)y

′
+ C(x)y = D(x) .(14.1)

(Here A,B,C and D are certain prescribed functions of x.)

As in the case of first order linear equations, in any interval where A(x) �= 0, we can replace such an equation
by an equivalent one in standard form:

y
′′ + p(x)y′ + q(x)y = g(x)(14.2)

where

p(x) = B(x)

A(x)

q(x) = C(x)

A(x)

g(x) = D(x)

A(x)

(14.3)

2. Homogeneous vs. Non-homogeneous Linear Differential Equations

In the development that follows it will be important to distinguish between the case when the right hand
side of

y
′′ + p(x)y′ + q(x)y = g(x)(14.4)

is zero or non-zero. We shall say that a second order linear ODE is homogeneous if it can be written in
the form

y
′′ + p(x)y′ + q(x)y = 0(14.5)

otherwise (if g(x) �= 0) we shall say that it is non-homogeneous. Note that this terminology is completely
unrelated to homogeneous equations of degree zero (the topic of the preceding lecture).

3. Differential Operator Notation

Consider the general second order linear differential equation

φ
′′ + p(x)φ′ + q(x)φ = g(x) .(14.6)

We shall often write differential equations like this as

L[φ] = g(x)(14.7)

where L is the linear differential operator

L =
d
2

dx2
+ p(x)

d

dx
+ q(x) .(14.8)
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That is to say, L is the operator that acts on a function φ by

L[φ] =
(
d
2

dx2
+ p(x) d

dx
+ q(x)

)
φ

=
d
2
φ

dx2
+ p(x)

dφ

dx
+ q(x)φ .

(14.9)

4. General Theorems

The following theorem tells us the conditions for the existence and uniqueness of solutions of a second order

linear differential equation.

Theorem 14.1. If the functions p, q and g are continuous on an open interval I ⊂ R containing the point

xo, then in some interval about xo there exists a unique solution y = φ(x) to the differential equation

y′′
+ p(x)y′

+ q(x)y = g(x)(14.10)

satisfying the prescribed initial conditions

y(xo) = yo
y′(xo) = y′

o
.

(14.11)

Note how this theorem is analogous to the corresponding theorem for first order linear ODE’s. Note also

that the conditions for existence and uniqueness are fairly lax - all we require is the continuity of the

functions p, q, and g around a given initial point. Finally, we note that the form of the initial conditions

involves the specification of both y(x) and its derivative y
′
(x) at an initial point xo.

I should also point out that the preceding theorem does not address the issue of how to construct a solution

of a second order linear ODE. Indeed, the actual construction of solutions to second order linear ODE is

sufficiently complicated to that we shall spend 90% of the remaining lectures on techniques of solution. The

next two theorems at least tell us the basic ingredients for a general solution of a second order linear ODE.

Theorem 14.2. (The Superposition Principle) If y = y1(x) and y = y2(x) are two solutions of the differ-

ential equation

L[y] =
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0(14.12)

then any linear combination

y = c1y1(x) + c2y2(x)(14.13)

of y1(x) and y2(x), where c1 and c2 are constants, is also a solution of (14.12).

Proof.

L [c1y1 + c2y2] = d
2

dx2
(c1y1 + c2y2) + p(x) d

dx
(c1y1 + c2y2) + q(x) (c1y1 + c2y2)

= c1

(
d2y1
dx2

+ p(x)dy1
dx

+ q(x)y1

)
+ c2

(
d2y3
dx2

+ p(x)dy2
dx

+ q(x)y2

)

= c1 · 0 + c2 · 0

= 0

(14.14)

The fact that a linear combination of solutions of a linear, homogeneous differential equation is

also a solution is extremely important. The theory of linear homogeneous equations, including differential

equations involving higher derivatives depends strongly on the superposition principle.
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Example 14.3.

y1(x) = cos(x)(14.15)

and

y2(x) = sin(x)(14.16)

are both solutions of

y
′′ + y = 0.(14.17)

It is easy to check that any linear combination of y1 and y2 is also a solution.

Example 14.4.

y1(x) = 1(14.18)

and

y2(x) = x
1/2(14.19)

are both solutions of

yy
′′ + (y′)2 = 0.(14.20)

However, it is easy to check that y1 + y2 = 1 +
√
x is not a solution of (14.20). The reason for this lies in

the fact that (14.20) is not linear.

Given two solutions y1 and y2 of a second order linear homogeneous differential equation

L[y] = 0 ,(14.21)

we can construct an infinite number of other solutions

y(x) = c1y1(x) + c2y2(x)(14.22)

by letting c1 and c2 run through R. The following question then arises: are all the solutions of (14.21)

capable of being expressed in form (14.22) for some choice of c1 and c2?

This will not always be the case; and so we shall say that two solutions y1 and y2 form a fundamental set

of solutions to (14.21) if every solution of (14.21) can be expressed as a linear combination of y1 and y2.

Theorem 14.5. If p and q are continuous on an open interval I = (α,β) and if y1 and y2 are solutions of

the differential equation

L[y] = y
′′ + p(x)y′ + q(x)y = 0(14.23)

satisfying

W (y1, y2) = y1(x)y
′

2
(x) − y

′

1
(x)y2(x) �= 0(14.24)

at every point x ∈ I, then any other solution of (14.23) on the interval I can be expressed uniquely as a

linear combination of y1 and y2.

Proof.

Let y1 and y2 be two given solutions on an interval I and let Y be an any other solution on I. Choose a

point x
o
∈ I . From our basic uniqueness and existence theorem (Theorem 3.2), we know that there is only

solution y(x) of (14.23) such that

y(xo) = Y (xo)

y′(xo) = Y ′(xo) .
(14.25)

namely, Y (x). Therefore if we can show that a solution of the form

y(x) = c1y1(x) + c2y2(x)

satisfies the initial conditions (14.25), then we must have Y (x) = c1y1(x) + c2y2(x) and so Y (x) is a linear

combination of y1(x) and y2(x).
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Thus, we now seek to define constants c1 and c2 so that these initial conditions can be matched. We thus

set

c1y1(xo) + c2y2(xo) = yo
c1y

′

1
(x

o
) + c2y

′

2
(x

o
) = y′

o
.

(14.26)

This is just a series of two equations with two unknowns. Solving the first equation for c1 yields

c1 =
yo − c2y2(xo)

y1(xo)
.(14.27)

Plugging this into the second equation yields

yo − c2y2(xo)

y1(xo)
y′

1(xo) + c2y
′

2 (xo) = y′

o
(14.28)

or

y
o
y′

1
(x

o
) − c2y2(xo)y

′

1
(x

o
) + c2y1(xo)y

′

2
(x

o
) = y1(xo)y

′

o
(14.29)

or

c2 =
y1(xo)y

′

o
− y′

1
(x

o
)y

o

y1(xo)y
′

2
(xo) − y′

1
(xo)y2(xo)

.(14.30)

Plugging this expression for c2 into (14.27) yields

c1 =
yoy

′

2(xo) − y2(xo)y
′

o

y1(xo)y
′

2
(xo) − y′

1
(xo)y2(xo)

.(14.31)

Thus, we can solve for c1 and c2 whenever the denominator

W (y1, y2) = y1(xo)y
′

2(xo) − y′

1(xo)y2(xo)(14.32)

does not vanish. Thus, so long as y1 and y2 satisfy (14.23) we can always express any solution as a linear

combination of y1 and y2.

Remark: The quantity

W (y1, y2) = y1(xo)y
′

2(xo) − y′

1(xo)y2(xo)(14.33)

is called the Wronskian of y1 and y2.

Example 14.6. Show that

y1(x) = cos(x)(14.34)

and

y2(x) = sin(x)(14.35)

are form a set of fundamental solutions to the differential equation

y
′′
+ y = 0 .(14.36)

We simply have to check that the Wronskian does not vanish:

W (y1, y2) = y1(xo)y
′

2
(x

o
)− y

′

1
(x

o
)y2(xo)

= cos(x) (cos(x)) − (− sin(x)) sin(x)

= 1

�= 0 .

(14.37)

Since the Wronskian does not vanish, y1 and y2 must be linearly independent.


