
LECTURE 11

Sample Exam

Math 2233.003

FIRST EXAM

10:30 — 11:20 am, October 1, 1997

Name:

1. Consider the plot below of the direction field for the differential equation y
′ = (y − 1)(y + 1).

(a) (5 pts) Sketch the solution curve satisfying y(0) = 0.

(b) (5 pts) Suppose y(x) is a solution satisfying y(0) = −2. What can you say about the asymptotic

behavior of y(x) as x→∞?

• The solution curves are have positive slope and so are increasing for all y < −1. However, at y = −1,

the slope must be zero. Therefore, a solution satisfying y(0) = −2 will increase but asymptotically

approach the line y = −1 as x→∞.

(c) (5 pts) Suppose y(x) is a solution satisfying y(1) = 0.5. What can you say about the asymptotic behavior

of y(x) as x→∞?

• The solution curves are have negative slope and so are decreasing for all −1 < y < 1. However,

at y = −1, the slope must be zero. Therefore, a solution satisfying y(0) = −2 will decrease but

asymptotically approach the line y = −1 as x→∞.

2. (15 pts) Consider the following nonlinear first order ODE: y′ = y
2 and suppose y(x) is the solution

satisfying y(1) = 2. Use the Euler method with n = 3 and ∆x = 0.1 to estimate y(1.3).
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• Set

x0 = 1

y0 = 2

∆x = 0.1

The slope of the solution passing throught the point (1,2) will be

m0 =
dy

dx

∣
∣
∣
∣
(1,2)

= y
2
∣
∣
(1,2)

= 2
2

= 4

Therefore we take the next point of the solution curve to be

x1 = x0 + ∆x = 1.1

y1 = y0 + m0∆x = 2 + (4)(0.1) = 2.4

The slope of the solution curve at this point (1.1,2.4) must then be

m1 =
dy

dx

∣
∣
∣
∣
(1.1,2.4)

= y
2
∣
∣
(1.1,2.4)

= (2.4)
2

= 5.76

so

x2 = x1 + ∆x = 1.2

y2 = y1 +m1∆x = 2.4 + (5.76)(0.1) = 2.976

Continuing, we calculate the slope at (1.2,2.976) to be

m2 =
dy

dx

∣
∣
∣
∣
(1.2,2.976)

= y
2
∣
∣
(1.2,2.976)

= (2.976)
2

= 8.8566

and so

x3 = x2 + ∆x = 1.3

y3 = y2 +m2∆x = 2.976 + (8.8566)(0.1) = 3.8617

So

y(1.3) = y3 = 3.8617

3. (15 pts) Consider the following nonlinear first order ODE: y′ = x cos(y). Write down the first four terms

of the Taylor expansion of the solution satisfying y(0) = 0 about x = 0 (i.e. the terms up to order x3).

•

y
′

(x) = x cos(y)

y
′′

(x) = cos(y) − x sin(y)y
′

(x)

y
′′′

(x) = − sin(y)y
′

(x) − sin(y)y
′

(x) − x cos(y) (y
′

(x))
2
− x sin(y)y

′′

(x)

Since y(0) = 0, we then have

y
′

(0) = 0 · 1 = 0

y
′′

(0) = 1 − 0 · 0 · 1 = 1

y
′′′

(0) = −0 · 0 − 0 · 0 − 0 · 1 · (0)
2 − 0 · 0 · 1 = 0

Hence

y(x) = y(0) + y
′

(0)x+
1

2!
y
′′

(0)x
2

+
1

3!
y
′′′

(0)x
3

+ · · ·

=
1

2
x
2

+ · · ·
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4. (20 pts) Find an explicit solution of the following (separable) initial value problem.

2x +
1

y
y
′

= 0 , y(1) = 1

•
dy

y
= −2xdx

ln |y| =

∫
dy

y
=

∫
−2xdx + C = −x

2
+ C

When x = 1, y = 1, so we must have

0 = ln |1| = −1
2

+ C

or C = 1. Hence

ln |y| = −x
2

+ 1

or

y = e
1−x

2

5. (15 pts) Solve the following initial value problem

y
′
−

2

x
y = x

3
, y(1) = 1

•

p(x) = −

2

x

g(x) = x
3

µ(x) = exp

[∫
p(x)dx

]
= exp

[
−

∫
2dx

x

]
= exp [−2 ln |x|] = exp

[
ln |x

−2
|
]

= x
−2

y(x) =
1

µ(x)

∫
µ(x)g(x)dx+

C

µ(x)

= x
2

∫
x
−2
x
3
dx+Cx

2

=
1

2
x
4

+Cx
2

We now plug into the initial condition

6.

(a) (5 pts)Show that the following equation is not exact.

(3x
3
y + xy

2
) +

(
2xy

2
+ x

2
y
) dy
dx

= 0

•

M = 3x
3
y + xy

2
⇒

∂M

∂y
= 3x

3
+ 2xy

N = 2xy
2

+ x
2
y ⇒

∂N

∂x
= 2y

2
+ 2xy

Since
∂M

∂y
�=

∂N

∂x
the differential equation is not exact.

(b) (5 pts) Show that µ(x, y) = x
−1
y
−1 is an integrating factor for the equation in Part (a).
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• Multiplying the differential equation by µ(x, y) we obtain

1

xy

(
(3x

3
y + xy

2
) +

(
2xy

2
+ x

2
y
) dy
dx

)
= 0

or (
3x

2
+ y

)
+ (2y + x)

dy

dx
= 0.

For this equation

M = 3x
2

+ y ⇒
∂M

∂y
= 1

N = 2y + x ⇒
∂N

∂x
= 1

and so the new equation is exact

(
∂M

∂y
=

∂N

∂x

)
.

(c) (10 pts) Use the integrating factor in Part (b) to find the general solution of the differential equation in

Part (a).

• Since

(
3x

2
+ y

)
+ (2y + x)

dy

dx
= 0

is exact there must exist an equivalent algebraic equation of the form

φ(x, y) = C

with the function φ(x, y) satisfying

∂φ

∂x
= M = 3x

2
+ y

∂φ

∂y
= N = 2y + x

Un-doing the partial derivatives in the two equations above yields the following two ’guesses’ for

φ(x, y).

φ(x, y) =

∫
∂φ

∂x
∂x+H1(y) =

∫ (
3x

2
+ y

)
∂x+H1(y) = x

3
+ xy +H1(y)

φ(x, y) =

∫
∂φ

∂y
∂y +H2(x) =

∫
(2y + x)∂y +H2(x) = y

2
+ xy +H2(x)

Comparing these two expressions for φ(x, y), we see we must take H1(y) = y
2, H2(x) = x

3, and

φ(x, y) = x
3+xy+y

2. Hence our original differential equation is equivalent to the following algebraic

equation:

x
3

+ xy + y
2

= C.

Applying the quadratic formula to solve for y we obtain

y(x) =
−x±

√
x2 − 4(x3 −C)

2


