
LECTURE 8

First Order Linear Differential Equations

We now turn our attention to the problem of constructing analytic solutions of differential equations; that

is to say, solutions that can be expressed in terms of elementary functions (or formulae). We consider first

the case of first order linear differential equations.

1. Linear vs Non-Linear Differential Equations

An ordinary or partial differential equation is said to be linear if it is linear in the “unknowns” f , df

dx
, d

2
f

dx2
,

etc.. Thus, a general, linear, ordinary, nth order, differential equation would be one of the form

an(x)
dnf

dxn
(x) + an−1(x)

dn−1f

dxn−1
(x) + · · · + a1(x)

df

dx
(x) + f(x) = g(x) .

It is important to note that the functions an(x), . . . , a1(x), g(x) need not be linear functions of x. The

following two examples should convey the general idea.

Example 8.1.

x
2
∂f

∂x
+ z

∂
2
f

∂y2
= e

zxy

is a 2
nd

order, linear, partial, differential equation.

Example 8.2.

d
3
f

dx3
+ x

2
df

dx
+ f

2
= 1

is a non-linear, ordinary, differential equation of order 3. The equation is non-linear arises because of the

presence of the term f
2

which is a quadratic function of the unknown function f .

2. Solving First Order Linear ODEs

A linear first order ordinary differential equation is a differential equation of the form

a(x)y
′
+ b(x)y = c(x) .(8.1)

Here y represents the unknown function, y′ its derivative with respect to the variable x, and a(x), b(c) and

c(x) are certain prescribed functions of x (the precise functional form of a(x), b(x), and c(x) will fixed in

any specific example). So long as a(x) �= 0, this equation is equivalent to a differential equation of the form

y′
+ p(x)y = g(x)(8.2)

where

p(x) =
b(x)

a(x)
,

g(x) =
c(x)

a(x)
.
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We shall refer to a differential equation (8.2) as the standard form of differential equation (8.1). (In

general, we shall say that an ordinary linear differential equation is in standard form when the coefficient

of the highest derivative is 1.)

Our goal now is to develop a formula for the general solution of (8.2). To accomplish this goal, we shall first

construct solutions for several special cases. Then with the knowledge gained from these simpler examples,

we will develop a general formula for the solution of any differential equation of the form (8.2).

Case (i) p(x) = 0, g(x) = arbtrary function.

In this case, we have

dy

dx
= g(x) ,

and so we are looking for a function whose derivative is g(x). Applying the Fundamental Theorem of

Calculus (integral ⇔ anti-derivative), we have

y(x) =

∫
dy

dx
dx =

∫
g(x) dx =

∫
x

g(x) dx + C ,

where C is an arbitrary constant of integration.

Example 8.3.

y
′
= 3 cos(4x)

⇒ y(x) =

∫
x

3 cos(4x) dx + C

=
3

4
sin(4x) +C

Case (ii): g(x) = 0, p(x) = arbitrary function.

In this case we are trying to solve a differential equation of the form

y
′
+ p(x)y = 0 .(8.3)

To construct a solution, we first re-write (8.3) as an equation involving differentials

dy

dx
+ p(x)y = 0

⇒

dy

y
= −p(x)dx

Integrating both sides of the latter equation (the left hand side with respect to y and the right hand side

with respect to x) yields

ln(y) = −

∫
x

p(x
′
) dx

′
+ C

or, exponentiating both sides

y = exp

[
−

∫
x

p(x
′
) dx

′
+ C

]
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y = exp

[
−

∫
x

p(x
′
) dx

′
+ C

]

= e
C

exp

[
−

∫
x

p(x
′
) dx

′

]

= A exp

[
−

∫
x

p(x
′
) dx

′

]

In the last step we have simply replaced the constant eC, which is arbitrary since C is arbitrary, by another

arbitrary constant A. There is nothing tricky here; the point is that in the general solution the numerical

factor in front of the exponential function is arbitrary and so rather than writing this factor as eC we use

the simpler form A. Thus, the general solution of

y
′
+ p(x) = 0

is

y = A exp

[
−

∫
x

p(x
′
) dx

′

]
.

We note that in both Cases (i) and (ii), we constructed a solution by carrying out a single integration, and

in doing so an arbitrary parameter (due to a constant of integration) was introduced. This is typical of first

order differential equations. Indeed, a general solution to an n
th-order differential equation will involve n

arbitrary parameters. We shall see latter that in physical applications these arbitrary constants correspond

to initial conditions.

Case (iii): g(x) �= 0, p(x) = a, a constant.

In this case we have

dy

dx
+ ay = g(x) .

To solve this equation we employ a trick. (This will not be the last trick you see in this course.) Let’s

multiply both sides of this equation by e
ax

:

e
ax

y
′
+ ae

ax
y = e

ax
g(x).

Noticing that the right hand side is
d

dx
(e

ax
y) (via the product rule for differentiation) we have, equivalently,

d

dx
(e

ax
y) = e

ax
g(x) .

We now take anti-derivatives of both sides to get

e
ax

y =

∫
x

e
ax

′

g(x′) dx′ + C

or

y(x) =
1

eax

∫
x

eax
′

g(x′) dx′ + Ce−ax .

Example 8.4.

y′ − 2y = x
2
e
2x

This equation is of type (iii) with

p = −2

g(x) = x
2
e
2x

.

So we multiply both sides by e
−2x to get

d

dx

(
e
−2x

y
)

= e
2x

(y
′
− 2y) = e

−2x
(
x
2
e
2x
)

= x
2
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Integrating both sides with respect to x, and employing the Fundamental Theorem of Calculus on the left

yields

e
−2x

y =
1

3
x
3

+C

or

y =
1

3
x
3
e
2x

+Ce
2x

.

Let us now confirm that this is a solution

y
′
= x

2
e
2x

+
2

3
x
3
e
2x

+ 2Ce
2x

−2y = −
2

3
x
3
e
2x
− 2Ce

2x

so

y
′
− 2y = x

2
e
2x

3. The General Case

We are now prepared to handle the case of a general first order linear differential equation; i.e., differential

equations of the form

y
′
+ p(x)y = g(x)(8.4)

with p(x) and g(x) are arbitrary functions of x.

Note: This case includes all the preceding cases.

We shall construct a solution of this equation in a manner similar to case when p(x) is a constant; that is,

we will try find a function µ(x) satisfying

µ(x) (y
′
+ p(x)y) =

d

dx
(µ(x)y)(8.5)

Multiplying (8.4) by µ(x), we could then obtain

d

dx
(µ(x)y) = µ(x)g(x)

which when integrated yields

µ(x)y =

∫
x

µ(x
′
)g(x

′
) dx

′
+C

or

y =
1

µ(x)

∫
x

µ(x
′
)g(x

′
) dx

′
+

C

µ(x)
(8.6)

It thus remains to find a suitable function µ(x); i.e., we need to find a function µ(x) so that

d

dx
(µ(x)y) = µ(x)y

′
+ µ(x)yp(x)

This will certainly be true if

d

dx
µ(x) = p(x)µ(x) .(8.7)



3. THE GENERAL CASE 27

Thus, we have to solve another first order, linear, differential equation of type (iii). As before we re-write

(8.7) in terms of differentials to get

dµ

µ
= p(x)dx ,

and then integrate both sides; yielding

ln(µ) =

∫
x

p(x′
) dx′

+A .

Exponentiating both sides of this relation yields

µ = exp

(∫
x

p(x′
)dx′

+A

)

µ = exp

(∫
x

p(x′
)dx′

+ A

)

= A′
exp

(∫
x

p(x′
) dx′

)

So a suitable function µ(x) is

µ(x) = A′
exp

(∫
x

p(x′
)dx′

)

Inserting this expression for µ(x) into our formula (14) for y yields

y(x) =
1

A′ exp
(∫

x

p(x′′)dx′′
)
[∫

x

A′
exp

(∫
x

′

p(x′)dx′′

)
g(x′)dx′ + C

]

It is easily see that the constant A′ in the denominator is irrelevant to the final answer. This is because it

can be canceled out by the A′ within the integral over x′, and it can be absorbed into the arbitrary constant

C in the second term. Thus, the general solution to a first order linear equation

y′ + p(x)y = g(x)

is given by

y(x) =
1

µ(x)

∫
x

µ(x′)g(x′)dx′ +
C

µ(x)

(8.8)

µ(x) = exp

(∫
x

p(x′)dx′

)

Example 8.5.

xy′ +2y = sin(x)(8.9)

Putting this equation in standard form requires we set

p(x) = 2

x

g(x) =
sin(x)

x

Now ∫
p(x) dx =

∫
2

x
dx = 2 ln(x) = ln

(
x2

)
,
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so

µ(x) = exp
[∫

x

p(x′) dx′

]

= exp
[
ln

(
x2

)]

= x2

Therefore,

y(x) =
1

µ(x)

∫
x

µ(x′
)g(x′

) dx′
+

C

µ(x)

=
1

x2

∫
x

(x′
)
2

sin(x′)

x′
dx′

+
C

x2

=
1

x2

∫
x

x′
sin(x′

) dx′
+

C

x2

Now ∫
x sin(x) dx

can be integrated by parts. Set

u = x , dv = sin(x)dx

Then

du = dx , v =

∫
dv = − cos(x)

and the integration by parts formula,
∫

udv = uv −

∫
vdu ,

tells us that ∫
x sin(x) dx = −x cos(x) +

∫
cos(x) dx

= −x cos(x) + sin(x) .

Therefore, we have as a general solution of (8.9),

y(x) =
1

x2
(−x cos(x) + sin(x)) +

C

x2

=
1

x2
sin(x)−

1

x
cos(x) +

C

x2
.


