
LECTURE 4

Numerical Methods

I shall now give an easy method of constructing an (approximate) numerical solution to a differential

equation of the form

dx

dt
= F (t, x) , ∀ t ∈ [a, b](4.1)

The beauty of this method is that it works for any first order differential equation (well, so long as the

function F (x, t) on the right hand side is a continuous function of x and t on the interval [a, b]). However, it

has a rather ugly side as well - the final result will not be a presentation of the solution in terms of known

functions; rather it will simply be a table of values of the solution at a discrete set of points ti ∈ [a, b].

To construct our numerical solution, we begin by first dividing up the interval [a, b] into n subintervals. Set

∆t =
b− a

n
(4.2)

and let

t0 = a(4.3)

t1 = a+∆x

t2 = a+2∆x

.

.

.

ti = a+ i∆x

.

.

.

tn = a+ n∆t = a+
b− a

∆t
∆t = b

Let xi = x (ti) denote the value of a solution of (4.1) at the point ti and let ẋi =
dx

dt
(ti). The differential

equation (4.1) then requires

ẋi = F (ti, xi) , i = 0,1, . . . , n(4.4)

Now by making ∆t small enough, we can approximate ẋi =
dx

dt
(ti) to an arbitrarily high degree of accuracy

by setting

ẋi =
dx

dt
(ti) ≈

∆x

∆t
=

xi+1 − xi

∆t
(4.5)

And so, the differential equation (4.1) is approximately equivalent to the following set of algebraic equations

xi+1 − xi

∆t
= F (ti, xi) , i = 0, . . . , n− 1(4.6)

Solving (4.6) for xi+1, we obtain

xi+1 = xi +∆tF (ti, xi) . i = 0,1, . . . , n− 1(4.7)

or, more explictly,
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x1 = x0 +∆tF (t0, x0)(4.8)

x2 = x1 +∆tF (t1, x1)(4.9)

x3 = x2 +∆tF (t2, x2)(4.10)

.

.

.(4.11)

xi+1 = xi +∆tF (ti, xi)(4.12)

.

.

.(4.13)

xn = xn−1 +∆tF (tn−1, xn−1)(4.14)

This set of equations relates now relates all the xi, i = 1, 2, . . . , n to x0.

To see this, note that when i = 0 equation (4.8) implies

x1 = x0 +F (t0, x0)(4.15)

But now inserting this expression for x1 into the right hand side of (4.9) yields

x2 = x0 + F (t0, x0) +F (t1, x0 +F (t0, x0))(4.16)

Thus, x2 is expressed entirely in terms of x0. We now replace the x2 on the rightt hand side of (4.10) with

the expression on the right hand side of (4.16) to express x3 directly in terms of x0. Repeating this process

n− 1 times we can express all the xi in terms of x0.

Example 4.1. Construct a numerical solution of the differential equation

dx

dt
= x

2
t , ∀ t ∈ [0.1].

such that

x(0) = 1.

on the interval [0, 1].

Let’s set n = 10, and let

∆t =
1− 0

n
= .

1

10

t0 = 0

t1 = t0 +∆t = 0.1

t2 = t0 +2∆t = 0.2

.

.

.

t10 = t0 +10∆t = 1

and let xi, i = 0, . . . ,10 represent the values of x(t) when t = 0, . . . , 10. Since in this example

F (t, x) = x
2
t

equations (4.8) - (4.14) take the form

x1 = x0 +∆tt0x
2

0

x2 = x1 +∆tt1x
2

1

x3 = x2 +∆tt2x
2

2

.

.

.

x10 = x9 +∆tt9x
2
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Since ∆t =
1

10
, ti =

i

10
and x0 = x(0) = 1, in this example, these equations can also be written as

x1 = 1

x2 = x1 +
0.1

10
x
2

1 = 1 + (0.01)(1) = 1.01

x3 = x2 +
0.2

10
x
2

2 = (1.01) + (0.02)(1.01) = 1.0302

.

.

.

x10 = x9 +
0.9

10
x
2

9 = 1.712852586

The data given above, of course, is not so useful in getting a feel for our solution x(t) of the differential

equation. To gain a little more intuition as to what our solution looks like, we can plot the pairs of points

(ti, xi), i = 0,1, . . . ,10 in the tx plane. Such a plot is given below.

By mentally connecting the dots, we can get an idea of what the graph of our solution looks like.

Alternatively, we can choose our number of sample points n to very large, say n = 1000, repeat the

calculation (on a computer) and plot the results. Doing so we get a graph like
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which is not only far more accurate (in matching the exact solution), but also contains so many data points

that we don’t even have to imagine connecting them to see the graph of x(t).

Below I give a simple Maple routine that automated this calculation:

1. n:= 1000;

2. x[0] := 1.0;

3. f := (x,t) -> t*xˆ2;

4. dt := (1-0)/n;

5. for i from 0 to n do t[i] := i*d: od:

6. for j from 1 to n do x[j] := x[j-1] + dt*f(x[j-1],t[j-1]): od:

In the first line I declare the number of sample points to be 1000.

In the second line I declare the initial value of x to be 1.0

In the third line I declare the function appearing on the right hand side of the differential equation.

In the fourth line I declare the value for interval ∆t between adjacent sample points.

In the fifth line I create values for all the points ti = i ∗∆t.

In the sixth line I recursively apply the difference relation (4.7) to calculate all the xi = x(ti).

To see a plot of these points you can use the following Maple commands

1. with(plots);

2. pointlist := {seq([t[n],x[n]],n=0..1000)}:
3. plotpoints(pointlist);


