Math 2233 Homework Set 1 Supplement

Below are two sample problems that indicate how to sketch a solution using Maple and how to find a numerical solution using Maple.

1. Sketch the direction fields of the

$$\frac{dx}{dt} = t\sin(x).$$

in the region $0 \leq t \leq 2$, $0 \leq x \leq 2.$

A plot of the direction fields for this differential equation can be produced by Maple using the following commands:

2. Construct a numerical solution of the differential equation

$$\frac{dx}{dt} = x^2 t , \, \forall \, t \in [0.1].$$

such that

$$x(0) = 1.$$

on the interval [0,1].

	#Comment appear below
N:= 1000;	#number of iterations
t[0] := 0.0;	#initial value of t
x[0] := 1.0;	#initial value of x
t[N] := 1.0; dt := (t[N]- t[0])/N;	#final value of t #step size
f := (x,t) -> t*x^2;	<pre># the function on the R.H.S. # of the differential equation</pre>
<pre>for i from 1 to N do t[i] := t[i-1] + dt: x[i] := x[i-1] + dt*f(x[i-1],t[i-1]):</pre>	<pre># start of iterative procedure # next value of t # next value of x</pre>
od:	

To see a plot of these points you can use the following Maple commands

```
with(plots);
pointlist := {seq([t[n],x[n]],n=0..1000)}:
pointplot(pointlist);
```