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Abstract
We prove Langlands functoriality for the generic spectrum of general spin groups
(both odd and even). Contrary to other recent instances of functoriality, our resulting
automorphic representations on the general linear group are not self-dual. Together
with cases of classical groups, this completes the list of cases of split reductive groups
whose L-groups have classical derived groups. The important transfer from GSp4 to
GL4 follows from our result as a special case.
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1. Introduction
Let G be a connected reductive group over a number field k. Let G = G(A), where A

is the ring of adèles of k. Let LG denote the L-group of G, and fix an embedding

ι : LG ↪→ GLN (C) � W (k/k),

where W (k/k) is the Weil group of k. Without loss of generality, we may assume
that N is minimal. Let π = ⊗

v πv be an automorphic representation of G. Then for
almost all v, the local representation πv is an unramified representation, and its class
is determined by a semisimple conjugacy class [tv] in LG. Here v is a finite place of
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k. Let �v be the unramified representation of GLN (kv) determined by the conjugacy
class [ι(tv)] generated by ι(tv). Langlands’s functoriality conjecture then demands
the existence of an automorphic representation �′ = ⊗

v �′
v of GLN (A) such that

�′
v � �v for all the unramified places v.

In this article we prove functoriality in the cases where G is not classical but
the derived group LG0

D of the connected component of its L-group is. (We follow
the convention that a classical group is the stabilizer of a symplectic, orthogonal, or
Hermitian nondegenerate bilinear form. Hence, e.g., spin groups are not considered
classical.) These groups do not have a useful matrix representation. This fact creates
a major difficulty in proving stability of the corresponding root numbers, forcing us
to use rather complicated abstract structure theory.

We are mainly concerned with quasi-split groups and those automorphic repre-
sentations that are induced from generic cuspidal ones. The theory of Eisenstein series
reduces our problem to establishing functoriality for generic cuspidal representations
of G = G(A).

The cases when G is a quasi-split classical group were addressed in [7], [8], and
[23], unless G is a quasi-split special orthogonal group, which should be taken up by
the authors of [8].

In this article we establish the functorial transfer of generic cuspidal representa-
tions when G = GSpinm, the split general spin group of semisimple rank n = [m/2].
These groups are split reductive linear algebraic groups of type Bn or Dn whose
derived groups are double coverings of split special orthogonal groups. Moreover,
the connected component of their Langlands dual groups are LG0 = GSp2n(C) or
GSO2n(C), respectively. Then LG = GSO2n(C) × W (k/k) or GSp2n(C) × W (k/k),
according to whether m is even or odd. The map ι is the natural embedding. Observe
that LG0

D is now a classical group and that these groups are precisely the ones for
which G0

D is not classical, but LG0
D is. The transfer is to the space of automorphic

representations of GL2n(A).
It is predicted by the theory of (twisted) endoscopy of Kottwitz and Shelstad [28]

and Langlands and Shelstad [31] that the representations of GL2n(A) which are in the
image of this transfer must satisfy

� = �̃ ⊗ ω (1)

for some Hecke character ω, where �̃ denotes the contragredient of �. If ω� is the
central character of �, this implies that ω�/ωn must be a quadratic character µ of
k×\A

×. Each µ then determines a quadratic extension of k via class field theory,
and the group G which has transfers to automorphic representations of the type just
mentioned is the quasi-split form GSpin∗

2n of GSpin2n associated to the quadratic
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extension. The split case then corresponds to µ ≡ 1, which is the content of the
present article.

If a representation π of GSpin∗
2n(A) with central character ωπ transfers to � on

GL2n(A) satisfying � � �̃ ⊗ ω for some Hecke character ω, then ω = ωπ and
ω� = ωn

πµ, where µ is the quadratic Hecke character associated with the quasi-split
GSpin∗

2n. While we are not able to show that every � satisfying (1) is the transfer of
an automorphic representation π , we do show that our transfers satisfy (1). (In fact,
we prove that � is nearly equivalent to �̃ ⊗ ω for now; see Theorem 1.1.)

We should note here that if � is an automorphic transfer to GL2n+1(A) satisfying
(1), then ω = θ2 for some θ , and � ⊗ θ−1 is then self-dual. Therefore, this is already
subsumed in the self-dual case, which is a case of standard twisted endoscopy. On the
other hand, the case of GL2n(A) discussed above is an example of the most general
form of transfer that twisted endoscopy can handle.

As explained earlier, in this article we prove Langlands’s functoriality conjecture
in the form discussed for all generic cuspidal representations of split GSpinm(A). In
other words, we establish generic transfer from GSpinm(A) to GL2n(A). Extension
of this transfer to the nongeneric case requires either the use of models other than
Whittaker models or that of Arthur’s twisted trace formula. As far as we know, new
models for these groups have not been developed, and the fact that these groups are
not classical may make matters complicated. On the other hand, the use of Arthur’s
twisted trace formula depends at present on the validity of the fundamental lemmas
that are not available for these groups. We refer to [2] for information on the case of
GSp4.

To state our main theorem, fix a Borel subgroup B in G with a maximal (split)
torus T, and denote the unipotent radical of B by U. Let ψ be a nontrivial continuous
additive character of k\A. As usual, we use ψ and a fixed splitting (i.e., the choice
of Borel subgroup above along with a collection of root vectors, one for each simple
root of T; e.g., see [28, page 13]) to define a nondegenerate additive character of
U(k)\U(A), again denoted by ψ (see also [41, Section 2]).

Let (π, Vπ ) be an irreducible cuspidal automorphic representation of G(A). The
representation π is said to be globally generic if there exists a cusp form φ ∈ Vπ such
that ∫

U(k)\U(A)
φ(ng)ψ−1(n) dn �= 0. (2)

Note that cuspidal automorphic representations of general linear groups are always
globally generic. Two irreducible automorphic representations � and �′ of GLN (A)
are said to be nearly equivalent if there is a finite set of places T of k such that
�v � �′

v for all v �∈ T . Our main result is the following.
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THEOREM 1.1
Let k be a number field, and let π = ⊗

πv be an irreducible globally generic
cuspidal automorphic representation of either GSpin2n+1(A) or GSpin2n(A). Let S be
a nonempty finite set of non-Archimedean places v such that for v �∈ S, we have that πv

and ψv are unramified. Then there exists an automorphic representation � = ⊗
�v

of GL2n(A) such that for all places v �∈ S, the homomorphism parameterizing the
local representation �v is given by


v = ι ◦ φv : Wv −→ GL2n(C),

where Wv denotes the local Weil group of kv and φv : Wv −→ LG0 is the homomor-
phism parameterizing πv . Moreover, if ω� and ωπ denote the central characters of
� and π , respectively, then ω� = ωn

π . Furthermore, if v is an Archimedean place
or a non-Archimedean place with v �∈ S, then �v � �̃v ⊗ ωπv

. In particular, the
representations � and �̃ ⊗ ωπ are nearly equivalent.

At the non-Archimedean places v where πv is unramified with the semisimple con-
jugacy class [tv] in LG0 as its Frobenius-Hecke (or Satake) parameter, this amounts
to the fact that the local representation �v is the unramified irreducible admissible
representation determined by the conjugacy class generated by ι(tv) in GL2n(C). At
the Archimedean places, the existence of φv is contained in [30].

Our method of proof is that of applying an appropriate version of the Converse
Theorems (see [9], [11]) to a family of L-functions whose required properties, except
for one, are proved in [39], [15], [24], and [20]. The exception, that is, the main
stumbling block for applying the converse theorem, is that of stability of certain root
numbers under highly ramified twists. In [41] the root numbers, or more precisely
the inverses of the local coefficients, were expressed as a Mellin transform of certain
Bessel functions. Applying this to our case requires a good amount of development and
calculations. This is particularly important since the necessary Bruhat decompositions
for these groups are more complicated than for the classical groups. For that we have
to resort to using the abstract theory of roots which is harder since no reasonable
matrix representation is available for these groups. Moreover, the main theorem in
[41] is based on certain assumptions whose verification requires our calculations.

The fact that GSpin2n has a disconnected center makes matters even more com-
plicated. This leads us to use an extended group GSpin∼

2n of GSpin2n, so that our proof
of stability proceeds smoothly.

There are two important transfers that are special cases of this theorem. The first
is the generic transfer from GSp4 = GSpin5 to GL4 whose proof, as far as we know,
has never been published before. We should point out that even the unpublished proofs
of this result are based on methods that are fairly disjoint from ours. We finally remark
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that our result in this case also gives an immediate proof of the holomorphy of spinor
L-functions for generic cusp forms on GSp4 (see Remark 7.9).

The second special case is when G = GSpin6. In this case our transfer gives
the exterior square transfer from GL4 to GL6 due to H. H. Kim [22] which, when
composed with the symmetric cube of a cuspidal representation on GL2(A), leads to
its symmetric fourth.

The issue of whether the local components of the transfer at places in S are the
“correct” ones (strong transfer) has been dealt with for classical groups thanks to the
existence of the theory of descent from GLn to classical groups (see [16], [42]). The
analogous results for our cases have to wait until the descent or other techniques are
established for representations of GL2n(A) which satisfy (1). We should note here that,
contrary to the case of general linear groups, the local Langlands conjecture is not
yet available for the groups we deal with in the present article. What we mean by the
correct local component is that for places v ∈ S we do get the local transfer, which can
be defined, at least for generic local representations, using γ -factors of representations
of these groups twisted by those of general linear groups (see [8, Section 7]).

Further applications such as global estimates toward the Ramanujan conjecture
as well as some of the other applications established in [7] and [8] will be addressed
in future articles. As mentioned earlier, the cases of quasi-split GSpin groups will be
the subject matter of our next article.

Here is an outline of the contents of each section. In Section 2 we review the
structure theory of the groups involved in this article. In particular, we give a detailed
description of the root data for GSpin groups and their extensions. We then prove
the necessary analytic properties of local L-functions in Section 3. In particular, we
discuss the Standard Module Conjecture, which is another local ingredient. In Section 4
we go on to prove the most crucial local result, stability of γ -factors under twists
by highly ramified characters. This is where we do the calculations with root data
mentioned above and use the extended group. We then prove the necessary analytic
properties of the global L-functions in Section 5 which prepares us to apply the
converse theorem in Section 6. In Section 7 we include the special cases mentioned
above along with some other local and global consequences of the main theorem.

2. Structure theory
We review the structure theory for the families of algebraic groups relevant to the
current work, namely, GSpin2n+1 and GSpin2n, as well as their duals GSp2n and
GSO2n. We also introduce the group GSpin∼

2n, which is closely related to GSpin2n. It
shares the same derived group with GSpin2n. However, contrary to GSpin2n, which
has disconnected center, the center of GSpin∼

2n is connected. We need this group for
our purposes, as we explain later.
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2.1. Root data for GSpin groups
We first describe the algebraic group G = GSpinm, m = 2n+1 or 2n, and its standard
Levi subgroups in terms of their root data. We rely heavily on these descriptions in
the computations of Section 4.

The group GSpinm is the quotient of GL1 × Spinm by a central subgroup of order
2 (see Proposition 2.2).

PROPOSITION 2.1
The root datum of GSpinm can be described as the following. Let

X = Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zen,

X∨ = Ze∗
0 ⊕ Ze∗

1 ⊕ · · · ⊕ Ze∗
n,

and let 〈 , 〉 be the standard Z-pairing on X × X∨. The root datum for GSpinm is
(X, R, X∨, R∨) with R and R∨ generated, respectively, by

� = {α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = en},
�∨ = {α∨

1 = e∗
1 − e∗

2, α
∨
2 = e∗

2 − e∗
3, . . . , α

∨
n−1 = e∗

n−1 − e∗
n, α

∨
n = 2e∗

n − e∗
0},

if m = 2n + 1 and by

� = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en},
�∨ = {α∨

1 = e∗
1 − e∗

2, . . . , α
∨
n−1 = e∗

n−1 − e∗
n, α

∨
n = e∗

n−1 + e∗
n − e∗

0},

if m = 2n.

Proof
See [3, Section 2]. �

In the odd case, G has a Dynkin diagram of type Bn:

α1

�

α2

�

αn−2

�

αn−1

�

αn

�� � � � 〉

In the even case, it has a Dynkin diagram of type Dn:
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α1

�

α2

�

αn−3

�

αn−2

�

�

αn−1

�

αn

� � � �
�

�
��

�
�

��

PROPOSITION 2.2
The derived group of G is isomorphic to Spin2n+1 or Spin2n, the double coverings, as
algebraic groups, of special orthogonal groups. In fact, G is isomorphic to

(GL1 × Spinm)/
{
(1, 1), (−1, c)

}
,

where c = αn
∨(−1) if m = 2n + 1 and c = αn−1

∨(−1)αn
∨(−1) if m = 2n. The dual

of G is GSp2n if m = 2n + 1 and GSO2n if m = 2n.
Moreover, if M is the Levi component of a maximal standard parabolic subgroup

of G, then M is isomorphic to GLk × GSpinm−2k with k = 1, 2, . . . , n if m = 2n + 1
and k = 1, 2, . . . , n − 2, n if m = 2n.

Proof
See [3, Section 2]. �

We can also describe the Levi subgroup M in terms of its root datum. Without loss of
generality, we may assume that M is maximal. Obviously, M has the same character
and cocharacter lattices as those of G. Denote the set of roots of M by RM, and denote
its coroots by R∨

M. They are generated by �−{α} and �∨ −{α∨}, respectively, where
α = αk unless m = 2n and k = n, in which case α can be of either αn or αn−1

(resulting in two nonconjugate isomorphic Levi components). In the sequel, the case
of m = 2n and k = n − 1 is therefore always ruled out, and we do not repeat this
again.

PROPOSITION 2.3
(a) The center of G is given by

ZG =
{

A0 if m = 2n + 1,

A0 ∪ (ζ0A0) if m = 2n,

where

A0 = {
e∗

0(λ) : λ ∈ GL1
}

and ζ0 = e∗
1(−1)e∗

2(−1) · · · e∗
n(−1).
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(b) The center of M is given by

ZM =
{

Ak if m = 2n + 1,

Ak ∪ (ζkAk) if m = 2n,

where

Ak = {
e∗

0(λ)e∗
1(µ)e∗

2(µ) · · · e∗
k (µ) : λ,µ ∈ GL1

}
and ζk = e∗

k+1(−1)e∗
k+2(−1) · · · e∗

n(−1).

Proof
The maximal torus T of G (or M) consists of elements of the form

t =
n∏

j=0

e∗
j (tj )

with tj ∈ GL1. Now t is in the center of G, respectively, M, if and only if it belongs
to the kernel of all simple roots of G, respectively, M. For G, this leads to

t1

t2
= t2

t3
= · · · = tn−1

tn
= tn = 1

if m = 2n + 1 and

t1

t2
= t2

t3
= · · · = tn−1

tn
= tn−1tn = 1

if m = 2n. For M, we get

t1

t2
= t2

t3
= · · · = tk−1

tk
,

tk+1

tk+2
= · · · = tn−1

tn
= tn = 1

if m = 2n + 1 and

t1

t2
= t2

t3
= · · · = tk−1

tk
,

tk+1

tk+2
= · · · = tn−1

tn
= tn−1tn = 1

if m = 2n. These relations prove the proposition. �

Remark 2.4
When m = 2n, the nonidentity component of ZG can also be written as z′A0, where z′

is a nontrivial element in the center of Spin2n, the derived group of G. We now specify
this element explicitly in terms of the central element z of [3, Proposition 2.2]. There
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is a typographical error in the description of z in that article which we correct here:

z =
{∏n−2

j=1 αj
∨((−1)j

) · αn−1
∨(−1) if n is even,∏n−2

j=1 αj
∨((−1)j

) · αn−1
∨(−√−1)αn

∨(
√−1) if n is odd.

To compute z′, note that with m = 2n we have

e∗
1 + · · · + e∗

n−1 + e∗
n =

n−2∑
j=1

jαj
∨ +

(n

2
− 1

)
αn−1

∨ + n

2
αn

∨ + n

2
e∗

0,

which, when evaluated as a character at (−1), yields

ζ0 =



z if n = 4p,

ze∗
0(

√−1) if n = 4p + 1,

cze∗
0(−1) if n = 4p + 2,

cze∗
0(−√−1) if n = 4p + 3.

Therefore, ζ0A0 = z′A0, where z′ is an element in the center of Spin2n given by

z′ =
{

z if n ≡ 0, 1 mod 4,

cz if n ≡ 2, 3 mod 4.

2.2. Root data for GSpin∼ groups
We describe the structure theory for the group GSpin∼

2n as well as its standard Levi sub-
groups in this section. For our future discussion on stability of γ -factors in Section 4,
we need to work with a group with a connected center. The center of GSpin2n is not
connected, as we observed in Proposition 2.3. To remedy this, we define a new group
that is just GSpin2n extended by a one-dimensional torus. This group has a connected
center, while its derived group remains the same as that of GSpin2n, that is, Spin2n.
This allows us to work with GSpin∼

2n, as we explain in Section 4.

Definition 2.5
Let GSpin∼

2n be the group

(GL1 × GSpin2n)/
{
(1, 1), (−1, ζ0)

}
,

where ζ0 is as in Proposition 2.3. Note that the derived group of GSpin∼
2n is again

Spin2n.
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PROPOSITION 2.6
Let

X = ZE−1 ⊕ ZE0 ⊕ ZE1 ⊕ · · · ⊕ ZEn,

X∨ = ZE∗
−1 ⊕ ZE∗

0 ⊕ ZE∗
1 ⊕ · · · ⊕ ZE∗

n,

and let 〈 , 〉 be the standard Z-pairing on X × X∨. Then (X, R,X∨, R∨) is the root
datum for GSpin∼

2n with R and R∨ generated, respectively, by

� = {α1 = E1 − E2, . . . , αn−1 = En−1 − En, αn = En−1 + En − E−1}

and

�∨ = {α∨
1 = E∗

1 − E∗
2 , . . . , α∨

n−1 = E∗
n−1 − E∗

n, α
∨
n = E∗

n−1 + E∗
n − E∗

0 }.

Proof
Our proof is similar to the proof of [3, Proposition 2.4]. We compute the root datum
of GSpin∼

2n using that of GSpin2n described earlier, and we verify that it can be written
as above.

Start with the character lattice of GL1 × GSpin2n which can be written as the
Z-span of e0, e1, . . . , en, and e−1. Here, e−1 is a generator for the character lattice of
the GL1 factor. Now, characters of GSpin∼

2n are those characters of GL1 × GSpin2n

which are trivial when evaluated at the element (−1, ζ0). Note that ei(ζ0) = −1 for
1 ≤ i ≤ n, e0(ζ0) = 1, and e−1(−1) = −1. This implies that the character lattice of
GSpin∼

2n can be written as the Z-span of 2e−1, e0, e1 + e−1, . . . , en + e−1. Now, set
E−1 = 2e−1, E0 = e0, and Ei = e−1 + ei for 1 ≤ i ≤ n. We can compute a basis for
the cocharacter lattice using the Z-pairing of the root datum. It turns out to consist of
E∗

−1 = e∗
−1/2 − (e∗

1 + · · · + e∗
n)/2, E∗

0 = e∗
0, and E∗

i = e∗
i for 1 ≤ i ≤ n. Writing the

simple roots and coroots in terms of the new bases finishes the proof. For example,

αn = en−1 + en = (en−1 + e−1) + (en + e−1) − 2e−1 = En−1 + En − E−1

and

αn
∨ = e∗

n−1 + e∗
n − e∗

0 = E∗
n−1 + E∗

n − E∗
0 .

�

We can also describe the root datum of any standard Levi subgroup M in GSpin∼
2n.

Again, without loss of generality, we may assume that M is maximal. Similar to the
case of GSpin2n, the roots and coroots of M are, respectively, generated by � − {αk}
and �∨ − {αk

∨} for some k. The character and cocharacter lattices are the same as
those of GSpin∼

2n.
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PROPOSITION 2.7
(a) The center of GSpin∼

2n is given by{
E∗

0 (µ)E∗
1 (λ)E∗

2 (λ) · · ·E∗
n(λ)E∗

−1(λ2) : λ,µ ∈ GL1
}
,

and it is hence connected.
(b) The center of M is given by{

E∗
0 (µ)E∗

1 (ν) · · · E∗
k (ν)E∗

k+1(λ) · · · E∗
n(λ)E∗

−1(λ2) : λ,µ, ν ∈ GL1
}
,

and it is hence connected.

Proof
The maximal torus of GSpin∼

2n (or M) consists of elements of the form

t =
n∏

j=−1

E∗
j (tj )

with tj ∈ GL1. Now t is in the center of G, respectively, M, if and only if it belongs
to the kernel of all simple roots of G, respectively, M. For G, this leads to

t1

t2
= t2

t3
= · · · = tn−1

tn
= tn−1tn

t−1
= 1.

For M, we get

t1

t2
= t2

t3
= · · · = tk−1

tk
,

tk+1

tk+2
= · · · = tn−1

tn
= tn−1tn

t−1
= 1.

These relations prove the proposition. �

We also describe the structure of standard Levi subgroups in GSpin∼
2n.

PROPOSITION 2.8
The standard Levi subgroups of GSpin∼

2n are isomorphic to

GLk1 × · · · × GLkr
× GSpin∼

2l ,

where k1 + · · · + kr + l = n.

Proof
Without loss of generality, we may assume that M is maximal. The character and
cocharacter lattices of M, which are the same as those of G, were described in
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Proposition 2.6 and can be written as

(ZE1 ⊕ · · · ⊕ ZEk) ⊕ (ZE−1 ⊕ ZE0 ⊕ ZEk+1 ⊕ · · · ⊕ ZEn)

and

(ZE∗
1 ⊕ · · · ⊕ ZE∗

k ) ⊕ (ZE∗
−1 ⊕ ZE∗

0 ⊕ ZE∗
k+1 ⊕ · · · ⊕ ZE∗

n),

respectively. This, along with the description of roots and coroots of M given above,
implies that the root datum of M can be written as a direct sum of two root data.
The first one is now the well-known root datum of GLk , and the second is just our
earlier description of the root datum of GSpin∼

2(n−k). Therefore, M is isomorphic to
GLk × GSpin∼

2(n−k). �

2.3. Root data for GSp2n and GSO2n

We describe the root data for the two groups GSp2n and GSO2n in detail. Since these
two groups are usually introduced as matrix groups, we also describe the root data
in terms of their usual matrix representations. It is evident from this description that
the two groups GSpin2n+1 and GSp2n, as well as GSpin2n and GSO2n, are pairs of
connected reductive algebraic groups with dual root data.

Consider the group defined as{
g ∈ GL2n : tgJg = µ(g)J

}
,

where the (2n × 2n)-matrix J is defined via

J =



1
. .

.

1
−1

. .
.

−1


or



1
. .

.

1
1

. .
.

1


,

respectively. The former is the connected reductive algebraic group GSp2n. However,
the latter is not connected as an algebraic group. This group is sometimes denoted by
GO2n (see [34, Section 2]). Its connected component is the group GSO2n (also denoted
by SGO2n).

PROPOSITION 2.9
The root datum of the groups GSp2n and GSO2n can be described as follows. Let

X = Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zen,

X∨ = Ze∗
0 ⊕ Ze∗

1 ⊕ · · · ⊕ Ze∗
n,
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and let 〈 , 〉 be the standard Z-pairing on X × X∨. Then (X, R, X∨, R∨) is the root
datum for the connected reductive algebraic group GSp2n or GSO2n with R and R∨

generated, respectively, by

� = {α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = 2en − e0},
�∨ = {α∨

1 = e∗
1 − e∗

2, α
∨
2 = e∗

2 − e∗
3, . . . , α

∨
n−1 = e∗

n−1 − e∗
n, α

∨
n = e∗

n},

for GSp2n and

� = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en − e0},
�∨ = {α∨

1 = e∗
1 − e∗

2, . . . , α
∨
n−1 = e∗

n−1 − e∗
n, α

∨
n = e∗

n−1 + e∗
n},

for GSO2n.

Proof
See [45, pages 133 – 136] for GSp2n. Similar computations work for GSO2n. �

The Dynkin diagrams are of type Cn and Dn, respectively. A computation similar to
the proof of Proposition 2.3 proves the following.

PROPOSITION 2.10
Let G be either GSp2n or GSO2n. Then the center of G is given by

Z = {
e∗

0(λ2) e∗
1(λ) · · · e∗

n(λ) : λ ∈ GL1
}
.

The maximal split torus in both GSp2n and GSO2n can be described as

T̂ =


t(a1, . . . , an, bn, . . . , b1) =



a1

. . .

an

bn

. . .

b1


: aibi = µ


.

(3)

We can now describe ei and e∗
i in terms of matrices. In either case, we have

e0(t) = µ, e∗
0(λ) = t(1, . . . , 1, λ, . . . , λ),

(4)
ei(t) = ai, e

∗
i (λ) = t(1, . . . , 1, λ

↑
i

, 1, . . . , 1, λ−1

↑
2n+1−i

, 1, . . . , 1), 1 ≤ i ≤ n.
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3. Analytic properties of local L-functions
Let F denote a local field of characteristic zero, either Archimedean or non-
Archimedean. Let Gn denote the algebraic group GSpin2n+1 (resp., GSpin2n), and let
σ be an irreducible admissible generic representation of M = M(F ) in G = Gr+n(F ),
where M � GLr × Gn is the Levi subgroup of a standard parabolic subgroup P in
Gr+n. Let M̂ � GLr (C) × GSp2n(C) (resp., M̂ � GLr (C) × GSO2n(C)) be the Levi
component of the corresponding standard parabolic subgroup P̂ in the dual group
Ĝ = LG0 = GSp2(n+r)(C) (resp., Ĝ = GSO2(n+r)(C)). Let r denote the adjoint action
of M̂ on the Lie algebra of the unipotent radical of P̂ . Then by [3, Proposition 5.6],
r = r1 ⊕ r2 if n ≥ 1 (resp., n ≥ 2) with r1 = ρr ⊗ R̃ and r2 = Sym2ρr ⊗ µ−1 (resp.,
r2 = ∧2

ρr ⊗µ−1). Here, ρr denotes the standard representation of GLr (C), R̃ denotes
the contragredient of the standard representation of GSp2n(C) (resp., GSO2n(C)),
and µ denotes the similitude character of GSp2n(C) (resp., GSO2n(C)). If n = 0,
then r = r1 with r1 = Sym2ρr ⊗ µ−1 (resp., r1 = ∧2

ρr ⊗ µ−1). Recall that we
have excluded n = 1 in the even case. The Langlands-Shahidi method defines the
L-functions L(s, σ, ri) and ε-factors ε(s, σ, ri, ψ) for 1 ≤ i ≤ 2, where ψ is a
nontrivial additive character of F . (In the global setting, it is the local component
of our fixed global additive character ψ of Section 1.) If π denotes a representation
of Gn(F ) and τ denotes one of GLr (F ), then we sometimes employ the following
notation for these L-functions as well as their global analogues:

L(s, π × τ ) := L(s, τ ⊗ π̃ , ρr ⊗ R̃) = L(s, τ ⊗ π̃ , r1), (5)

ε(s, π × τ, ψ) := ε(s, τ ⊗ π̃ , ρr ⊗ R̃, ψ) = ε(s, τ ⊗ π̃ , r1, ψ). (6)

PROPOSITION 3.1
Assume that σ is tempered. Then the local L-function L(s, σ, ri) is holomorphic for
�(s) > 0 for 1 ≤ i ≤ 2.

Proof
The result is known more generally for Archimedean F (see [36] or [1]). For non-
Archimedean F , this is [3, Theorem 5.7]. Here, i = 1, 2, and the first L-function gives
the Rankin-Selberg product while the second is either the twisted symmetric or the
twisted exterior square L-function. When n = 0, we get only the second L-function
(see [3, Proposition 5.6]). �

The following proposition is due to W. Kim (in his Ph.D. dissertation [25]) when F is
non-Archimedean and, in more generality, due to Kostant [27] and Vogan [48] when
F is Archimedean.

PROPOSITION 3.2 (The Standard Module Conjecture for Gn)
Let σ be an irreducible admissible generic representation of M(F ), where M is a
standard maximal Levi subgroup as before, and let ν be an element in the positive
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Weyl chamber. Let I (ν, σ ) be the representation unitarily induced from ν and σ (the
standard module), and denote by J (ν, σ ) its unique Langlands quotient. Assume that
J (ν, σ ) is generic. Then J (ν, σ ) = I (ν, σ ). In particular, I (ν, σ ) is irreducible.

A similar result also holds for general linear groups (see [49]).

Remark 3.3
For small values of n, we need not rely on [25]. We can obtain the result for small n

from published ones as we now explain. The group GSpin5 is isomorphic to GSp4,
whose derived group is Sp4. G. Muić has proved the Standard Module Conjecture
for (quasi-split) classical groups (see [33, Theorem 1.1]). The result for GSpin5 now
follows from Corollary 3.5.

Similarly, note that the derived group of GSpin6 is isomorphic to Spin6 � SL4

and hence equal to the derived group of GL4. Therefore, again by Corollary 3.5, the
result for GSpin6 follows from the Standard Module Conjecture for GL6.

PROPOSITION 3.4
Let G ⊂ G̃ be two connected reductive groups whose derived groups are equal. Let
P̃ = M̃N be a maximal standard parabolic subgroup of G̃, and let P = MN be the
corresponding one in G with M = M̃ ∩ G. Also, let T̃ ⊂ M̃ and T = T̃ ∩ G ⊂ M
be maximal tori in G̃ and G, respectively. Let σ̃ be a quasi-tempered representation
of M̃ = M̃(F ), and denote by σ its restriction to M = M(F ). Write σ =⊕

iσi with σi

irreducible representations of M . Let I (σ̃ ) denote the induced representation Ind
M̃N↑G̃

σ̃⊗
1 of G̃ = G̃(F ), and let I (σi) denote Ind

MN↑G
σi ⊗ 1, a representation of G = G(F ).

Then the standard module I (σ̃ ) is irreducible if and only if each standard module
I (σi) is irreducible.

Proof
By the irreducibility of σ̃ and the fact that M̃ = T̃ M , choose{

t1 = 1, t2, . . . , tk : ti ∈ T̃ = T̃(F )
}

such that σi(m) = σ1(t−1
i mti). Observe that

I (σ̃ )|G =
⊕

i

I (σi). (7)

In fact, for f1 ∈ V (σ1), define fi(g) = f1(t−1
i gti). Then fi ∈ V (σi), the space of

I (σi), and the representation I (σi)(t
−1
i gti) on V (σ1) is isomorphic to I (σi) since(

I (σ1)(t−1
i gti)f1

)
i
= I (σi)(g)fi (8)
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for all g ∈ G. In particular, I (σi) is irreducible if and only if I (σ1) is. The assumption
of the equality of the derived groups implies that G̃ = T̃ G, which, in turn, implies
that T̃ acts transitively on the set of I (σi).

If each I (σi) is irreducible, then I (σ̃ ) has to be irreducible. In fact, if (Ĩ1, Ṽ1) is
an irreducible subrepresentation of I (σ̃ ), then

Ĩ1 | G =
⊕

j

Ij , Ij �= {0}, (9)

and given j , there exists i such that Ij ⊂ I (σi). Conversely, for each i there exists j

such that 0 �= Ij ⊂ I (σi). Fix i such that V (σi) ∩ Ṽ1 �= 0. Since Ṽ1 is invariant under
T̃ , applying I (σ̃ )(T̃ ) to this intersection, one concludes that 0 �= V (σi) ∩ Ṽ1 ⊂

�=
V (σi)

for all i. Consequently, 0 �= Ij ⊂
�=

I (σi), which is a contradiction.

Conversely, suppose that I (σ̃ ) is irreducible but I (σi)’s are (all) reducible. Let Vi

be an irreducible G-subspace of V (σi). Then⊕
i

I (σ̃ )(ti)Vi (10)

is a G̃-invariant subspace of V (σ̃ ) which is strictly smaller than V (σ̃ ), a contra-
diction. �

COROLLARY 3.5
Suppose that G and G′ are two connected reductive groups having the same derived
group. Then the Standard Module Conjecture is valid for G if and only if it is valid
for G′.

Proof
Let H be the common derived group. Apply Proposition 3.4 once to H ⊂ G and again
to H ⊂ G′. �

The Langlands-Shahidi method defines the local L-functions via the theory of inter-
twining operators. With notation as above, let the standard maximal Levi subgroup M
in G correspond to the subset θ of the set of simple roots � of G. Then θ = � − {α}
for a simple root α ∈ �. We denote by w the longest element in the Weyl group of
G modulo that of M. Then w is the unique element with w(θ) ⊂ � and w(α) < 0.
Let A(s, σ,w) denote the intertwining operator as in [39, (1.1), page 278], and let
N(s, σ,w) be defined via

A(s, σ,w) = r(s, σ, w)N(s, σ, w), (11)

r(s, σ,w) = L(s, σ, r̃1)L(2s, σ, r̃2)

L(1 + s, σ, r̃1)ε(s, σ, r̃1, ψ)L(1 + 2s, σ, r̃2)ε(2s, σ, r̃2, ψ)
. (12)
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In fact, the Langlands-Shahidi method inductively defines the γ -factors using the
theory of local intertwining operators out of which the L- and ε-factors are defined
via the relation

γ (s, σ, ri, ψ) = ε(s, σ, ri, ψ)
L(1 − s, σ, r̃i)

L(s, σ, ri)
. (13)

The following proposition about analytic properties of local L-functions is the
main result of this section. We use it to prove the necessary global analytic properties.

PROPOSITION 3.6
Let σ be a local component of a globally generic cuspidal automorphic representation
of M(A). Then the normalized local intertwining operator N(s, σ, w) is holomorphic
and nonzero for �(s) ≥ 1/2.

Proof
First, assume that σ is tempered. Then A(s, σ,w) is holomorphic for �(s) > 0 by a
result of Harish-Chandra. Moreover, for �(s) > 0 we have that r(s, σ,w) is nonzero
by definition and holomorphic by Proposition 3.1. This implies that N(s, σ,w) is also
holomorphic for �(s) > 0.

Next, assume that σ is not tempered but still unitary. Write σ = τ ⊗ π̃ , where τ is
a representation of GLr (F ) and π̃ is one of Gn(F ). (We use π̃ in order to get the usual
Rankin-Selberg factors for pairs of general linear groups below.) By Proposition 3.2
and the classification of irreducible unitary representations of general linear groups,
we can write τ and π̃ as

τ = Ind(να1τ1 ⊗ · · · ⊗ ναpτp ⊗ τp+1 ⊗ ν−αpτp ⊗ · · · ⊗ ν−α1τ1)

and

π̃ = Ind(νβ1π1 ⊗ · · · ⊗ νβq πq ⊗ π0)

with 0 = αp+1 < αp < · · · < α1 < 1/2 and 0 < βq < · · · < β1, where τ1, . . . , τp+1

and π1, . . . , πq are tempered representations of the corresponding general linear
groups and π0 is a generic tempered representation of Gt (F ) for some t . Here, ν(·)
denotes | det(·)|F . Since we are assuming that σ is a component of a global cuspidal
representation (see Remark 3.7), it follows exactly as in [21, Lemma 3.3] that β1 < 1.
However, note that one should use our π̃ in the argument.

Now N(s, σ,w) is equal to a product of rank-one operators for either GLk×GLl ⊂
GLk+l (Rankin-Selberg products) or GLk × Gl ⊂ Gk+l . Lemma 2.10 of [21] implies
that the former rank-one operators are holomorphic since �(s − α1 − β1) > −1 for
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�(s) ≥ 1/2. The latter rank-one operators are also holomorphic for �(s) ≥ 1/2 by
the tempered case at the beginning of this proof since α1 < 1/2.

The fact that N(s, σ, w) is a nonvanishing operator now follows from applying
a result of Y. Zhang to our case (see [50, pages 393 – 394]). Note that because of
Proposition 3.1, no assumptions are needed in applying [50]. �

Remark 3.7
Note that the proof of [21, Lemma 3.3] does depend on the fact that σ is assumed to be
a local component of a global cuspidal representation. To be more precise, the proof
uses [21, Theorem 3.2(3)], and it refers to [21, Proposition 1.8], which is a global
result.

4. Stability of γ -factors
We continue to denote by Gn either of the groups GSpin2n+1 or GSpin2n in this section.
In Sections 4.1 and 4.2 we denote by G∼

n the groups GSpin2n+1 in the odd case and
GSpin∼

2n in the even case (see Remark 4.2), and G denotes G∼
n+1 in either case.

In this section we prove a key local fact, called the stability of γ -factors, which
is what allows us to connect the Langlands-Shahidi L- and ε-factors to those in the
converse theorem. Similar results have been proved for the group SO2n+1 in [10] and
[7] and for other classical groups in [8], which we have followed. A more general
result appears in [12] and [13].

Let F denote a non-Archimedean local field of characteristic zero. Thus, F could
be one of the kv’s, where v is a finite place. Composing a fixed splitting of Gn with
ψ as in [41] defines a generic character of U as well as UM which we still denote by
ψ . Let π be an irreducible admissible ψ-generic representation of GSpin2n+1(F ) or
GSpin2n(F ), and let η be a continuous character of F×. The associated γ -factors of the
Langlands-Shahidi method defined in [39, Theorem 3.5] are denoted by γ (s, η×π,ψ).
They are associated to the pair (GSpinm+2, GL1 × GSpinm) of the maximal Levi
subgroup M = GL1 × GSpinm in the connected reductive group GSpinm+2, where
m = 2n + 1 or 2n. Recall that the γ -factor is related to the L- and ε-factors by

γ (s, η×, π, ψ) = ε(s, η × π,ψ)
L(1 − s, η−1 × π̃)

L(s, η × π)
. (14)

The main result of this section is the following.

THEOREM 4.1
Let π1 and π2 be irreducible admissible generic representations of GSpinm(F ) with
equal central characters ωπ1 = ωπ2 . Then for a sufficiently ramified character η of
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F× we have

γ (s, η × π1, ψ) = γ (s, η × π2, ψ).

The proof of this theorem is the subject matter of this section, including a review of
some facts about partial Bessel functions.

4.1. γ (s, η × π,ψ) as the Mellin transform of a Bessel function
Recall that G∼

n denotes either GSpin2n+1 or GSpin∼
2n. Then GL1 × G∼

n is a maximal
Levi subgroup in G = G∼

n+1. We refer to G = GSpin2n+3 as odd and G = GSpin∼
2n+2

as even in the rest of this section. Therefore, in the odd case, G∼
n and Gn are the same,

but they are not in the even case.

Remark 4.2
We need to assume that the center of our group G is connected for the proof of
Proposition 4.16. This is not true if G is taken to be GSpin2n+2, as we pointed
out in Proposition 2.3. To remedy this, we can alternatively work with the group
GSpin∼

2n+2 of Section 2.2. Since GSpin∼
2n+2 has the same derived group as GSpin2n+2,

its corresponding γ -factors are the same as those of GSpin2n+2 since they (and, in fact,
the local coefficients via which they are defined) depend only on the derived group of
our group. This has no effect on the arguments of the next few sections, as all of our
crucial computations take place inside the derived group.

Let G be as above with a fixed Borel subgroup B = TU as before. We continue to
denote its root data by (X, R, X∨, R∨), which we have described in detail in Section 2.
Consider the maximal parabolic subgroup P = MN in G, where N ⊂ U and the Levi
component, M, is isomorphic to GL1×G∼

n . The standard Levi subgroup M ⊃ T corre-
sponds to the subset θ = �−{α1} of the set of simple roots � = {α1, α2, . . . , αn, αn+1}
of (G, T) with notation as in Section 2. Let w̃0 denote the unique element of the Weyl
group of G such that w̃0(θ) ⊂ � and w̃0(α1) < 0. Notice that the parabolic subgroup
P is self-associate; that is, w̃0(θ) = θ . We denote by G, P , M , N , B, and so on, the
groups G(F ), P(F ), M(F ), N(F ), B(F ), and so on, in what follows. Also, denote the
opposite parabolic subgroup to P by P = MN .

Let Z = ZG and ZM be the centers of G and M, respectively. The following is
[41, Assumption 5.1] for our cases. We need this when dealing with Bessel functions.

PROPOSITION 4.3
There exists an injection e∗ : F× −→ ZG\ZM such that for all t ∈ F× we have
α1(e∗(t)) = t .
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Proof
We define e∗(t) to be the image in ZG\ZM of e∗

1(t) in the odd case and that of
E∗

1 (t) in the even case. The proposition is now clear from our explicit descriptions in
Section 2. �

Denote the image of e∗ by Z0
M as in [41]. (Note that [41] uses the notation α∨ for e∗.)

We now review some standard facts about the reductive group G whose proofs
could be found in either [43] or [44], for example. For α ∈ R, let uα : F −→ G be
the root group homomorphism determined by the equation

tuα(x)t−1 = uα

(
α(t)x

)
, t ∈ T , x ∈ F. (15)

Moreover, define wα : F× −→ G by

wα(λ) = uα(λ)u−α(−λ−1)uα(λ). (16)

Also, set wα := wα(1). Then

wα(λ) = α∨(λ)wα = wα α∨(λ−1), (17)

where α∨ is the coroot corresponding to α. The element wα normalizes T , and we
denote its image in the Weyl group by w̃α .

Remark 4.4
Our choice of wα is indeed the same as nα in [43, page 133]. This choice differs up to a
sign from those made in [41, (4.43), (4.19), or (4.56)], requiring wα to be the image of(

0 −1
1 0

)
under the homomorphism from SL2 into G determined by α. The latter choice

introduces an occasional negative sign in some of the equations, for example, (17).
Of course, this choice is irrelevant to the final results, and we have chosen Springer’s
since we are using some detailed information on structure constants from [43] in what
follows (see, e.g., Lemma 4.10).

Recall that

w−α(λ) = wα

(−1

λ

)
, (18)

w2
α = α∨(−1), (19)

w−α = w−1
α . (20)
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For any two linearly independent roots α and β in R and a total order on R, which
we now fix, we have

uα(x)uβ(y)uα(−x) = uβ(y)
∏
i,j>0

iα+jβ∈R

uiα+jβ(cij x
iyj ) (21)

for certain structure constants cij = cα,β;i,j (which may depend on the total order
R). In particular, if there are no roots of the form iα + jβ with i, j > 0, then
uα(x)uβ(y) = uβ(y)uα(x).

We recall the following result.

PROPOSITION 4.5
Let α and β be two arbitrary linearly independent roots, and let (β − cα, . . . , β +bα)
be the α-string through β. Then

wαwβ(x)w−1
α = ww̃α(β)(dα,βx), (22)

where

dα,β =
c∑

i=max(0,c−b)

(−1)i c−α,β;i,1 cα,β−iα;i+b−c,1. (23)

Moreover,

d−α,β = (−1)〈β,α∨〉dα,β, (24)

and

dα,βdα,w̃α(β) = (−1)〈β,α∨〉. (25)

Proof
This is [43, Lemma 9.2.2]. Note that Springer defines dα,β via

wαuβ(x)w−1
α = uw̃α(β)(dα,βx),

which, using (16), immediately implies (22). �

Denote the image of uα in G by Uα . Notice that M is generated by T and Uα’s
with α ranging over �(θ), the set of all (positive and negative) roots spanned by
α2, α3, . . . , αn, αn+1, while N is generated by Uα’s, where α ranges over R(N) =
R+ −�(θ), the set of positive roots of G not in M (i.e., involving a positive coefficient
of α1 when written as a sum of simple roots with nonnegative coefficients), and N is
generated by Uα’s, where α ranges over R(N ) = R− − �(θ), the set of negative roots
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of G not in M (i.e., involving a negative coefficient of α1 when written as a sum of
simple roots with nonpositive coefficients). Let UM = U ∩ M . Then UM is generated
by Uα’s with α ∈ �(θ)+ = �(θ) ∩ R+.

The group M acts via the adjoint action on N ; in particular, both UM and Z0
M act

on N . We are interested in the orbits of N under conjugation by Z0
MUM .

LEMMA 4.6
Up to a subset of measure zero of N, the following is a complete set of representatives
for the orbits of N under conjugation by UM :

UM\N � {
uα1 (a)uγ (x) : a ∈ F×, x ∈ F

}
,

where

γ =
{
α1 + 2α2 + · · · + 2αn+1 if G is odd,

α1 + 2α2 + · · · + 2αn−1 + αn + αn+1 if G is even

is the longest positive root in G.

Proof
Using the same Bourbaki notation as in Section 2, R(N) is given by (see [6])

α1, α1 + α2, . . . , α1 + α2 + · · · + αn+1, α1 + α2 + · · · + αn + 2αn+1,

α1 + α2 + · · · + αn−1 + 2αn + 2αn+1, . . . , γ = α1 + 2α2 + · · · +
2αn + 2αn+1

 (26)

for the odd case and by
α1, α1 + α2, . . . , α1 + α2 + · · · + αn−1 + αn, α1 + α2 + · · · + αn−1+
αn+1, α1 + α2 + · · · + αn−1 + αn + αn+1, α1 + α2 + · · · + αn−2+
2αn−1 + αn + αn+1, α1 + α2 + · · · + 2αn−2 + 2αn−1 + αn + αn+1,

. . . , γ = α1 + 2α2 + · · · + 2αn−1 + αn + αn+1

 (27)

for the even case.
An arbitrary element n ∈ N is of the form

n =
∏

α∈R(N)

uα(xα) (28)

with xα ∈ F . The ordering in the product can be arbitrarily chosen since any linear
combination with positive integer coefficients of two roots in R(N) has α1 with an
integer coefficient of at least two which cannot be a root; hence by (21), any two



GENERIC TRANSFER FOR GENERAL SPIN GROUPS 159

terms in the above product commute. We make use of this fact in the rest of the
proof.

Observe that the set R(N) has the property that if α belongs to R(N), then so
does γ − α + α1. Notice that if α′ ∈ R(N) − {α1, γ }, then β = α′ − α1 ∈ �(θ)
and β > 0; hence g = uβ(xβ) ∈ UM for any xβ ∈ F . The observation means that
γ − β = γ − α′ + α1 ∈ R(N). Fix one such β, and consider the adjoint action of g

on n:

gng−1 =
∏

α∈R(N)

guα(xα)g−1 =
∏

α∈R(N)

uβ(xβ)uα(xα)uβ(−xβ).

We now look at each term in this product. If iβ + jα �∈ R for positive i and j , then
by (21), the term is equal to uα(xα). This is the case most of the time. The only roots
of the form iβ + jα with positive i and j are β + α1 and β + (γ − β) = γ , except
when we are in the odd case with β = α2 + · · · + αn+1 and α = α1, in which case
2β + α1 = γ is also a root. Therefore,∏

α∈R(N)

uβ(xβ)uα(xα)uβ(−xβ) =
∏

α∈R(N)

uα(yα),

where

yα =


xα if α �= β + α1, γ,

xα + Cxα1xβ if α = β + α1,

xα + C ′xβxγ−β + C ′′x2
βxα1 if α = γ, α �= β + α1.

Here, C, C ′, C ′′ ∈ F× are the appropriate structure constants as in (21). In fact, C ′′

is nonzero only in the exceptional case mentioned above, that is, the odd case with
β = α2 + · · · + αn+1 and α = α1.∗

Assuming that xα1 �= 0, which excludes only a subset of n ∈ N of measure zero,
we can choose xβ ∈ F appropriately in order to have xα + Cxα1xβ = 0. Applying
this process for all the β in �(θ) described above, we can make all xα in (28) equal to
zero, except for xα1 and xγ . In the process, the value of xα1 does not change, but the
value of xγ may change. We let a = xα1 , and we let x be the final value of xγ . This
proves the lemma. �

We now consider conjugation by Z0
M .

LEMMA 4.7
Let n = uα1 (a)uγ (x) ∈ N with a ∈ F× and x ∈ F . Then n and uα1 (1)uγ (y) are in the
same conjugacy class of N under conjugation by Z0

M for some y ∈ F .

∗We thank the referee who brought the exceptional case to our attention.
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Proof
For z = e∗

1(λ) ∈ Z0
M , in the odd case, we have

znz−1 = e∗
1(λ)uα1 (a)e∗

1(λ−1) e∗
1(λ)uγ (x)e∗

1(λ−1)

= uα1

(
α1(e∗

1(λ)) a
)

uγ

(
α1(e∗

1(λ)) x
)

= uα1 (λ〈α1,e
∗
1〉 a) uγ (λ〈γ,e∗

1〉 x)

= uα1 (λ a) uγ (λ x).

In the even case, e∗
1 above should be replaced by E∗

1 . Take λ = 1/a and y = x/a to
finish the proof. �

Lemmas 4.6 and 4.7 immediately imply the following.

COROLLARY 4.8
Up to a subset of measure zero of N, the following is a complete set of representatives
for the orbits of N under conjugation by Z0

MUM :

Z0
MUM\N � {

uα1 (1)uγ (x) : x ∈ F
}
.

If we set

w0 =
{
wα1wα2 · · · wαn

wαn+1wαn
· · · wα2wα1 if G is odd,

wα1wα2 · · · wαn−1wααwαn−1 · · · wα2wα1 if G is even,
(29)

where wαα is the product of the commuting elements wαn
wαn+1 = wαn+1wαn

, then w0

is the representative in G of the unique Weyl group element w̃0 introduced at the
beginning of Section 4.1.

Remark 4.9
Note that in [41] the analogue of our element wαα is denoted by wαn+1 as explained in
[41, (4.45)]. However, our current choices, which apply equally well to SO2n or other
cases treated in [41, Section 4], replace the two commuting matrices on the left-hand
side of [41, (4.45)] with their transposes (see Remark 4.4).

As in [41] we are interested in elements n ∈ N such that

w−1
0 n = mn′n ∈ PN. (30)

The decomposition in (30) is clearly unique, and we compute the m-, n′-, and
n-parts of an element n, as in Corollary 4.8. We do this in Proposition 4.12. First, we
prove the following auxiliary lemma.
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LEMMA 4.10
We can normalize the uα’s such that the element wγ satisfies

γ ∨(d)wγ = wγ (d) ={
wα2 · · · wαn

wαn+1wαn
· · · wα2wα1w

−1
α2

· · ·w−1
αn

w−1
αn+1

w−1
αn

· · ·w−1
α2

if G is odd,

wα2 · · · wαn−1wααwαn−1 · · · wα2wα1w
−1
α2

· · · w−1
αn−1

w−1
αα w−1

αn−1
· · · w−1

α2
if G is even,

where

d =
{

(−1)n if G is odd,
(−1)n−1 if G is even.

(31)

Remark 4.11
The d in the odd case is slightly different from the corresponding value for the group
SO2n+3 carried out in [8, Section 4.2.1]; that is, it differs by a factor of −1. The reason
for this discrepancy is that the representative we have fixed for the longest element of
the Weyl group would, in the case of the group SO3, lead to −1

−1
−1

 .

This is the correct element that should have been used in [8, Section 4.2.1] and [41]
instead of  1

−1
1

 .

The latter is the corresponding Weyl group representative for the group SL3. However,
since the group SO3 does not have a Cartan of the same dimension as that of SL3,
there is no natural way (i.e., not requiring a choice of basis) of embedding it in SL3.
Therefore, there is no reason why the representative for SO3 would be the same as
that of SL3. Of course, both of these two matrices correspond to the same Weyl group
element since they differ only by a diagonal matrix in SO3. In the notation of the
present article, we can fix uα( ) and u−α( ) in SO3 such that

wα(λ) =
 −λ2

−1
−1/λ2

 .

The choice of representative is now simply wα(1).
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Proof of Lemma 4.10
We begin by noting that

γ =
{

w̃α2 · · · w̃αn
w̃αn+1w̃αn

· · · w̃α2 (α1) if G is odd,

w̃α2 · · · w̃αn−1w̃αn
w̃αn+1w̃αn−1 · · · w̃α2 (α1) if G is even.

(32)

Let β1 = α1, and denote by βi the consecutive images of β1 under the first i − 1 Weyl
group elements above for{

1 ≤ i ≤ 2n if G is odd,
1 ≤ i ≤ 2n − 1 if G is even.

In fact, the βi’s are precisely the roots listed in (26) and (27) and in the same order.
Now apply (22) repeatedly to conclude that the right-hand side of the expression

of the statement of the lemma is equal to wγ (d), where

d =
{

dα2,β1 · · · dαn,βn−1dαn+1,βn
dαn,βn+1 · · · dα2,β2n−1 if G is odd,

dα2,β1 · · · dαn−1,βn−2dαn,βn−1dαn+1,βn
· · · dα2,β2n−2 if G is even.

For 1 ≤ i ≤ n−1 in the odd case and for 1 ≤ i ≤ n in the even case, the αi+1-string
through βi is (βi, βi +αi+1); that is, c = 0 and b = 1 in the notation of Proposition 4.5.
In the odd case with i = n, the αi+1-string through βi is (βi, βi + αi+1, βi + 2αi+1);
that is, c = 0 and b = 2. Similarly, for 1 ≤ j ≤ n − 1 in the odd case, the αn−j−1-
string through βn+j is (βn+j , βn+j + αn−j−1); that is, c = 0 and b = 1. Also, for
1 ≤ j ≤ n − 2 in the even case, the αn−j -string through βn+j is (βn+j , βn+j + αn−j );
that is, c = 0 and b = 1. Putting all these together and using (23), we can write

dα2,β1 = cα2,β1;1,1
...

dαn,βn−1 = cαn,βn−1;1,1

dαn+1,βn
= cαn+1,βn;2,1

dαn,βn+1 = cαn,βn+1;1,1
...

dα2,β2n−1 = cα2,β2n−1;1,1

and

dα2,β1 = cα2,β1;1,1
...

dαn−1,βn−2 = cαn−1,βn−2;1,1

dαn,βn−1 = cαn,βn−1;1,1

dαn+1,βn
= cαn+1,βn;1,1
...

dα2,β2n−2 = cα2,β2n−2;1,1

in the odd and even cases, respectively.
We can now normalize the uα’s such that we have cαi,αi+1;1,1 = 1 and, in the

odd case, cαn,αn+1;1,2 = −1. These normalizations are motivated by the explicit matrix
realizations of the related groups SO2n+3 and SO2n+2, such as those in [41]. The
values of other structure constants are now uniquely determined by these (see [43,
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Lemma 9.2.3]). We then get

cα2,β1;1,1 = −1
...

cαn,βn−1;1,1 = −1
cαn+1,βn;2,1 = −1
cαn,βn+1;1,1 = +1

...
cα2,β2n−1;1,1 = +1

and

cα2,β1;1,1 = −1
...

cαn−1,βn−2;1,1 = −1
cαn,βn−1;1,1 = −1
cαn+1,βn;1,1 = +1

...
cα2,β2n−2;1,1 = +1.

Therefore, in the expression for d, the first n terms in the odd case and the first n − 1
terms in the even case are equal to −1, and others are equal to +1. This implies that
d = (−1)n in the odd case and d = (−1)n−1 in the even case. �

PROPOSITION 4.12
Assume that x ∈ F , and assume that n = uα1 (1)uγ (x) satisfies (30). Moreover, assume
that x is nonzero (which rules out only a subset of N of measure zero). Then

m = w′γ ∨
(d

x

)
,

n′ = uγ (−x)uα1 (−1),

n = u−γ

(1

x

)
u−α1 (1),

where d is as in (31) and

w′ =
{

w−1
α2

· · ·w−1
αn

w−1
αn+1

w−1
αn

· · ·w−1
α2

if G is odd,

w−1
α2

· · ·w−1
αn−1

w−1
αα w−1

αn−1
· · · w−1

α2
if G is even,

with wαα again as in (29). Moreover, we could also write m as

m = α1
∨
(d

x

)
w′, (33)

which is analogous to [41, Propositions 4.4, 4.8] modulo our Remark 4.4.

Proof
By the uniqueness of the decomposition in (30), it is enough to prove that these
values do satisfy (30). This is a straightforward computation utilizing (21) multiple
times.
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First, observe that if i, j > 0 are integers, then iα1 + jγ cannot be a root. Hence,
uγ (·) and uα1 (·) commute by (21). Also, iα1 + j (−γ ) cannot be a root, which again
implies by (21) that u−γ (·) and uα1 (·) commute. Similarly, uγ (·) and u−α1 (·) commute.

Moreover, by (29), we have

w0 = wα1w
′−1

wα1 (34)

and, by Lemma 4.10,

wγ (d) = w′−1
wα1w

′. (35)

Now,

w−1
0 n = w−1

α1
w′w−1

α1
uα1 (1)uγ (x)

= w−1
α1

w′uα1 (−1)u−α1 (1)uα1 (−1)uα1 (1)uγ (x)

= w−1
α1

w′uγ (x)uα1 (−1)u−α1 (1)

= w−1
α1

w′wγ (x)uγ (−x)u−γ

(1

x

)
uα1 (−1)u−α1 (1)

= w−1
α1

w′wγ (x) · uγ (−x)uα1 (−1) · u−γ

(1

x

)
u−α1 (1)

= w′w′−1
w−1

α1
w′wγ (x) · n′ · n

= w′wγ (d)−1wγ (x) · n′ · n

= w′
(

wγ γ ∨
( 1

d

))−1

wγ γ ∨
(1

x

)
· n′ · n

= w′γ ∨
(d

x

)
· n′ · n

= mn′n.

To see (33), we use (22) repeatedly to write

m = w−1
α1

w′wγ (x)

= w−1
α1

· w′wγ (x)w′−1 · w′

= w−1
α1

wα1 (Dx)w′

= w−1
α1

wα1α1
∨
( 1

Dx

)
w′

= α1
∨
( 1

Dx

)
w′,
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where

D =
{

d−α2,β2 · · · d−αn,βn
d−αn+1,βn+1d−αn,βn+2 · · · d−α2,β2n

if G is odd,

d−α2,β2 · · · d−αn−1,βn−1dαn,βn
d−αn+1,βn+1d−αn−1,βn+2 · · · d−α2,β2n−1 if G is even.

(36)

Notice that conjugation by w′−1 sends γ = β2n in the odd case and γ = β2n−1 in the
even case back to α1.

Finally, we claim that Dd = 1 in both even and odd cases. To see this, note that
we can write

Dd =
{∏n

i=1 dαi+1,βi
d−αi+1,βi+1

∏n−1
j=1 dαj+1,β2n−j

d−αj+1,β2n+1−j
if G is odd,∏n

i=1 dαi+1,βi
d−αi+1,βi+1

∏n−2
j=1 dαj+1,β2n−1−j

d−αj+1,β2n−j
if G is even.

Using (24) followed by (25), we can rewrite this as

Dd =
{∏n

i=1(−1)〈βi+βi+1,α
∨
i+1〉∏n−1

j=1(−1)〈β2n−j +β2n+1−j ,α
∨
j+1〉 if G is odd,∏n

i=1(−1)〈βi+βi+1,α
∨
i+1〉∏n−2

j=1(−1)〈β2n−1−j +β2n−j ,α
∨
j+1〉 if G is even.

Using the explicit root data that we described earlier, we can see easily that in every
single term of these products the power of (−1) is an even integer. In fact, βi + βi+1

is equal to αi+1 plus twice a root for all i. Similarly, β2n−j + β2n+1−j is equal to αj+1

plus twice a root for all j in the odd case, and β2n−1−j + β2n−j is equal to αj+1 plus
twice a root for all j in the even case. This completes the proof. �

The following is [41, Assumption 4.1] for our cases.

PROPOSITION 4.13
Let n ∈ N satisfy (30). Then, except for a subset of measure zero of N , we have

UM,n = U ′
M,m, (37)

where the notation is as in [41, Section 4]; that is,

UM,n = {u ∈ UM : u n u−1 = n}, (38)

and

U ′
M,m = {

u ∈ UM : m u m−1 ∈ UM and ψ(mum−1) = ψ(u)
}
.

Note that the condition ψ(mum−1) = ψ(u) in the definition of U ′
M,m in our case is just

the compatibility of ψ with elements of the Weyl group (see [41, pages 2079 – 2080]).
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Proof
By arguments such as those on [41, page 2085], if the proposition is true for n ∈ N ,
then it is also true for every member of the intersection of its conjugacy class under M

with N , provided that for the m-part we use the twisted conjugacy classes instead (see
[41, (4.10)]). Hence, it is enough to verify the proposition for those n, as in Corol-
lary 4.8. Fix one such n = uα1 (1)uγ (q) with q �= 0 for the rest of this proof.

We can explicitly compute both sides of (37) as follows. Any u ∈ UM can be
written as

u =
∏

β∈�(θ)+
uβ(xβ), (39)

where the order of the terms in the product is with respect to the total order of R we
have fixed.

We have unu−1 = n if and only if uuα1 (1)uγ (q)u−1 = uα1 (1)uγ (q). Notice that by
(21) we know that uγ (q) commutes with all uβ(xβ) in the product. Hence, u ∈ UM,n

if and only if uuα1 (1)u−1 = uα1 (1). Among the terms uβ(xβ), the element uα1 (1)
commutes with those with β ∈ �(�)+, where � = � − {α1, α2}. Also, if β belongs
to �(θ)+ − �(�)+, then so does γ − β − α1. Using (21) several times, we can now
write

uuα1 (1)u−1 =
∏

β∈�(θ)+
uβ(xβ)uα1 (1)

( ∏
β∈�(θ)+

uβ(xβ)
)−1

= uγ

(∑
cα1,β;1,1cα1+β,δ;1,1xβxδ

)
·

∏
β∈�(θ)+−�(�)+

uα1+β(−cα1,βxβ)·uα1 (1),

where the sum in the first term is over unordered pairs (β, δ) of roots in �(θ)+−�(�)+

such that β + δ = γ −α and β �= δ. Here the order of terms is prescribed by the order
we fixed in (39). This implies that uuα1 (1)u−1 = uα1 (1) if and only if xβ = 0 for all
β ∈ �(θ)+ − �(�)+. Therefore,

UM,n =
{ ∏

β∈�(�)+
uβ(xβ)

}
. (40)

To compute U ′
M,m, note that with d as in (31) we have

m u m−1 = w′γ ∨
(d

q

) ∏
β∈�(θ)+

uβ(xβ)γ ∨
(d

q

)−1
w′−1

= w′ ∏
β∈�(θ)+

uβ

(
β

(
γ ∨
(d

q

))
xβ

)
w′−1

=
∏

β∈�(θ)+
w′uβ

(
β

(
γ ∨
(d

q

))
xβ

)
w′−1

.
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Conjugation by the element w′ sends each positive root group of a root in �(θ)+ −
�(�)+ to a root group corresponding to a negative root and sends those with roots in
�(�)+ to themselves. Therefore, again,

U ′
M,m =

{ ∏
β∈�(�)+

uβ(xβ)
}
. (41)

Now (37) follows from (40) and (41). �

We wish to have an explicit identification of GL1(F ) × G∼
n (F ) with M as a Levi

subgroup of G. Going back to our descriptions of the groups GSpin2n+1 and GSpin∼
2n

in Section 2, note that if we consider the root datum obtained from that of G by
eliminating e1 and e∗

1 in the odd case and E1 and E∗
1 in the even case as well as the

root α1 and its corresponding coroot, then the remaining root datum corresponds to
a subgroup of G isomorphic to G∼

n . Denote the F -points of this subgroup by G∼
n .

Let k ∈ G∼
n , and let a ∈ F×. We claim that e∗

1(a) in the odd case (or E∗
1 (a) in the

even case) and k commute. To see this, it is enough to observe that e∗
1(a) (or E∗

1 (a))
commutes with uβ(x) for all β ∈ �(θ) since G∼

n is generated by the corresponding
Uβ’s along with a subtorus of T . By (15), we have

e∗
1(a)uβ(x)e∗

1(a)−1 = uβ

(
β(e∗

1(a))x
) = uβ(a〈β,e∗

1〉x)

and similarly for E∗
1 (a). Moreover, 〈β, e∗

1〉 = 0 for all β ∈ �(θ). Therefore, e∗
1(a)

in the odd case (or E∗
1 (a) in the even case) and all the uβ(x) commute. This implies

that the maps (a, k) �→ e∗
1(a)k in the odd case and (a, k) �→ E∗

1 (a)k in the even case
give an isomorphism identifying GL1(F ) × G∼

n (F ) with M . In particular, the element
m = α1

∨(d/x)w′ in (33) is identified with(
d

x
, e∗

2

(x

d

)
w′
)

or

(
d

x
, E∗

2

(x

d

)
w′
)

∈ GL1(F ) × G∼
n (F ) (42)

since α1
∨ = e∗

1 − e∗
2 in the odd case and α1

∨ = E∗
1 − E∗

2 in the even case (and noting
w′ ∈ G∼

n ). Moreover, e∗
2(x/d)w′ (or E∗

2 (x/d)w′) is an element of a maximal Levi
subgroup in G just as in the case of classical groups in [41].

We are now prepared to express the γ -factors as Mellin transforms.

PROPOSITION 4.14
Let σ be an irreducible admissible ψ-generic representation of G∼

n (F ) (see Remark
4.2). Consider GL1 × G∼

n as a standard Levi subgroup in G as above. Let η be any
nontrivial character of F× with η2 ramified. Then

γ (s, η × σ,ψ)−1 = g(s, η) ·
∫

F×
jv,N0

(
a(x)w′)η(x)|x|s−n−δ dx×, (43)
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where a(x) = e∗
2(x/d) or E∗

2 (x/d) is as in (42) (with d as in (31)), δ = 1/2 and
g(s, η) = η(−1)n in the odd case and δ = 1 and g(s, η) = η(−1)n−1γ (2s, η2, ψ)−1

in the even case. Here v ∈ Vσ and Wv ∈ W(σ,ψ) with Wv(e) = 1, where W(σ,ψ)
denotes the Whittaker model of σ . Moreover, N0 ⊂ N is a sufficiently large compact
open subgroup of the opposite unipotent subgroup N to N , where P = MN ⊂ G

is the Levi decomposition of the corresponding standard parabolic subgroup. The
function jv,N0

denotes the partial Bessel function defined in [41].

Proof
Given that η2 is ramified, this proposition is the main result of [41, Theorem 6.2,
(6.39)] applied to our cases. Notice that our Propositions 4.13 and 4.3 verify the two
hypotheses of that theorem (i.e., [41, Assumptions 4.1, 5.1]) for our cases.

To get from [41, (6.39)] to (43), note that we have

ω−1
σs

(ẋα)(w0ωσs
)(ẋα) = η(x)2|x|2s .

Moreover, as in [41, Section 7], we have

q〈sα̃+ρ,HM (ṁ)〉 dṅ = |x|−s−n+δ dx×

and

jṽ,N0
(ṁ) = η

(d

x

)
jv,N0

(
a(x)w′),

where a(x) = e∗
2(x/d) in the odd case and E∗

2 (x/d) in the even case. �

In Section 4.2 we first rewrite (43) in terms of Bessel functions defined similarly to
[10], and then we study their asymptotics.

4.2. Bessel functions and their asymptotics
We now briefly review some basic facts from [10]. Because of [8], and particularly
[12] and [13], where these issues are studied more generally, we concentrate only on
the cases at hand and leave out the details of the more general situation.

We use the same notation as in [10]. Consider the group G∼
n in both even and

odd cases, and consider w′ as an element of its Weyl group. Notice that w′ supports
a Bessel function and (in Bruhat order) is minimal nontrivial with respect to this
property. Moreover, Aw′ = ZM�

, where � = � − {α1, α2}, M� is the standard Levi
subgroup determined by �, and ZM�

denotes its center.
Let σ be an irreducible admissible ψ-generic representation of G∼

n (F ), and
take v ∈ Vσ such that the associated Whittaker function Wv ∈ W(σ,ψ) satisfies
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Wv(e) = 1. The associated Bessel function on ZM�
is defined via

Jσ,w′(a) =
∫

U−
w′

Wv(aw′u)ψ−1(u) du (44)

with a ∈ ZM�
and U−

w′ = ∏
α Uα , where the product is over all those α ∈ �(θ)+ for

which w′(α) < 0, and Uα is as before.
Similar to [10] and [8], we have that Jσ,w′ exists and is independent of v ∈ Vσ ,

and for convergence purposes we use a slight modification of it, namely, the partial
Bessel function

Jσ,w′,v,Y (a) =
∫

Y

Wv(aw′y)ψ−1(y) dy, (45)

where Y ⊂ U−
w′ is a compact open subgroup.

4.2.1. Domain of integration
We now show that the partial Bessel functions of [41] are the same as those in [10].

Recall that M = Mθ = GL1(F ) × G∼
n (F ) ⊂ G = G(F ), and consider m ∈ M as

in (42); that is, m = (d/x, e∗
2(x/d)w′) in the odd case and m = (d/x, E∗

2 (x/d)w′) in
the even case with d as in (31).

LEMMA 4.15
We can choose Y appropriately such that with m′ = e∗

2(x/d)w′ or E∗
2 (x/d)w′ as

above, we have

jv,N0
(m′) =


Jσ,w′,v,Y

(
e∗

2

(x

d

))
in the odd case,

Jσ,w′,v,Y

(
E∗

2

(x

d

))
in the even case.

Here, m′ is an element of the maximal Levi subgroup M ′ = GL1(F ) × G∼
n−1(F ) in

G∼
n (F ).

Proof
Let us first recall [41, Theorem 6.2]. In the notation of that article, we have jv,N0

(m′) =
jv,N0

(m′, y0) with y0 ∈ F× satisfying ordF (y0) = − cond(ψ) − cond(η2). Here, the
function jv,N0

(m′, y0) is given by∫
UM′ ,n\UM′

Wv(m′u−1) φ
(
u e∗(y0)−1e∗(xα)ne∗(xα)−1e∗(y0) u−1)ψ(u) du, (46)

where φ is the characteristic function of N0, xα = 1/x, n is as in Proposition 4.12, and
e∗ is as in Proposition 4.3. Again as in [10] and [8], it follows from Proposition 4.3
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that we can take UM,n\UM to be U−
w′ . Notice that this depends only on w′. On the

other hand, u ∈ U−
w′ is in the domain of integration if and only if

ue∗(y0)−1e∗(xα)ne∗(xα)−1e∗(y0)u−1 ∈ N0.

This condition is equivalent to ue∗(xα)ne∗(xα)−1u−1 ∈ e∗(y0)N0e
∗(y0)−1, and

e∗(y0)N0e
∗(y0)−1 is another compact open subgroup of the same type as N0, which

we may replace it with.
Recall that an arbitrary element of N is given by

n(y) =
∏

α∈R(N)

uα(yα), (47)

where y = (yα)α∈R(N) and yα ∈ F . Also recall that n in (46) was given by n =
u−γ (1/x)u−α1 (1). Moreover, note that xα = 1/x. Hence, e∗(xα)ne∗(xα)−1 = n(y ′),
where y ′

−γ = 1, y ′
−α1

= x, and all other coordinates of y ′ are zero (see (15)). Of
course, throughout we have a fixed ordering of the roots in the products similar to that
of (28). Hence, the domain of integration is determined by un(y ′)u−1 ∈ N0.

We may take N0 = {n(y) : yα ∈ pMα } for all α ∈ R(N ) for a sufficiently large
integer vector M = (Mα)α∈R(N). As the Mα’s increase, N0 exhausts N .

On the other hand, any u ∈ U−
w′ is given by

u = u(b) =
∏

α∈�+(�)

uα(bα) (48)

for b = (bα)α∈�+(�) and bα ∈ F . Now, un(y ′)u−1 = n(y ′′), where y ′′ depends linearly
on b and y ′. In other words, y ′′ depends upon x and b. Of course, we could compute y ′′

explicitly in terms of x and b using structure constants; however, that has no bearing
on what follows and is not needed. Now, choose Y = {u = u(b) : y ′′ ≥ M}. This
defines the domain of integration. Enlarging N0 if need be would then imply that the
domain Y does not depend on m, and we conclude the lemma. �

Therefore, we can rewrite (43) as

γ (s, η × σ,ψ)−1 = g(s, η) ·
∫

F×
Jσ,w′,v,Y

(
a(x)

)
η(x)|x|s−n−δ dx× (49)

with a(x) = e∗
2(x/d) or E∗

2 (x/d).

4.2.2. Asymptotics of Bessel functions
We now study the asymptotics of our Bessel functions near zero and infinity. This
allows us to prove our result on stability given that the γ -factors are already written
as the Mellin transform of Bessel functions.
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Our starting point is the following analogue of [10, Proposition 5.1] for our groups.
Note that the proposition was proved only for the group SO2n+1. However, as was
pointed out in [8], the methods used to prove it are quite general. This was pointed out
for classical groups (with finite center) in [8]. But the same also holds for GSpin or
GSpin∼ groups (see [12]), which are of interest to us since the only difference is the
infinite center that is already contained in the fixed Borel subgroup we are dividing
out with.

PROPOSITION 4.16
There exist a vector v′

σ ∈ Vσ and a compact neighborhood BK1 of the identity in
B\G∼

n such that if χ1 is the characteristic function of BK1, then for all sufficiently
large compact open sets Y ⊂ U−

w we have

Jσ,w,v,Y (a) =
∫

Y

Wv(awy)χ1(awy)ψ−1(y) dy + Wv′
σ
(a). (50)

Notice that w here would be our earlier w′ if we wanted to consider the group
G∼

n as part of the Levi subgroup M in G, as in (42).

We now rewrite this in a way that depends only on the central character of σ . To this
end, we argue similarly to [8], making some necessary modifications along the way.
For any positive integer M , set

U (M) = 〈uα(t) : α ∈ �, |t | ≤ qM〉.

These are compact open subgroups of U , and as the integer M grows, they exhaust U .
For any v ∈ Vσ , we define

vM = 1

Vol(U (M))

∫
U (M)

ψ−1(u)σ (u)v du.

The smoothness of σ implies that this is a finite sum and vM ∈ Vσ . Then just as
in [10], if Y is sufficiently large relative to M , we may choose v′

σ and K1 such that
K1 ⊂ Stab(vM ), and we have∫

Y

Wv(awy)χ1(awy)ψ−1(y) dy =
∫

Y

WvM
(awy)χ1(awy)ψ−1(y) dy. (51)

Write awy = utk1 with u ∈ U , t ∈ T , and k1 ∈ K1. Then K1 ⊂ Stab(vM )
implies that WvM

(awy) = ψ(u)WvM
(t). As in [10], the support of WvM

is contained in

TM = {
t ∈ T : α(t) ∈ 1 + p

M for all simple α
}
. (52)
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At this point we assume that the center Z is connected, which we can do (see
Remark 4.2). This is why we chose to work with the group GSpin∼ in the even case
in this section. By the connectedness of Z, and since the groups are split, we have the
following exact sequence of F -points of tori:

0 � Z � T � Tad
� 0, (53)

which splits (see [12], [13]). Recall that Z = Z(F ) and so on. Identify Tad with (F×)n

through values of roots, and let T 1
M ⊂ T be the image of

(1 + p
M )n ⊂ Tad,

under the splitting map. Here, the rank of Tad is n and TM = ZT 1
M .

Now if t ∈ T , then we can write t = zt1 with z ∈ Z and t ∈ T 1
M . Also, we have

Wv(t) = WvM
(t), and if we choose M large enough, so that T 1

M ⊂ T ∩ Stab(v), then

WvM
(t) = Wv(t) = Wv(zt1) = ωσ (z)Wv(t1) = ωσ (z).

Next, we note that in our integral, WvM
(awy)χ1(awy) �= 0 if and only if awy ∈

UTMK1 or y ∈ (aw)−1UTMK1. Writing awy = utk1 = u(awy)z(awy)t1k1 then
implies that∫

Y

Wv(awy)χ1(awy)ψ−1(y) dy =
∫

Y∩(aw)−1UTMK1

ψ
(
u(awy)

)
ψ−1(y)ωσ

(
z(awy)

)
dy.

(54)
Therefore, we can rewrite Proposition 4.16 as follows.

PROPOSITION 4.17
Let v ∈ Vσ with Wv(e) = 1, and choose M sufficiently large, so that T 1

M ⊂ T ∩Stab(v).
There exist a vector v′

σ ∈ Vσ and a compact open subgroup K1 such that for Y

sufficiently large we have

Jσ,w,v,Y (a) =
∫

Y∩(aw)−1UTMK1

ψ
(
u(awy)

)
ψ−1(y)ωσ

(
z(awy)

)
dy + Wv′

σ
(a).

4.3. Proof of Theorem 4.1
Let σi = πi , i = 1, 2, in the odd case. In the even case, choose a character µ of the
center Z∼ of GSpin∼

2n(F ) (which contains the center of GSpin2n(F )) such that µ

agrees with the central characters ωπ1 = ωπ2 on the center of GSpin2n(F ). Consider
the representation of GSpin∼

2n(F ) induced from the representation µ ⊗ πi on Z∼ ·
GSpin2n(F ) (which is of finite index in GSpin∼

2n(F )), and let σi be an irreducible
constituent of this induced representation (see [45]). Note that the choice of σi is
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irrelevant. Then

γ (s, η × σi, ψ) = γ (s, η × πi, ψ),

by Remark 4.2. Also, the assumption ωπ1 = ωπ2 implies ωσ1 = ωσ2 .
Choose vi ∈ Vσi

, i = 1, 2, with Wvi
(e) = 1, and let M be a large-enough integer,

so that T 1
M ⊂ T ∩Stab(vi). Choose a compact open subgroup K0 ⊂ Stab(v1)∩Stab(v2).

Then in Proposition 4.17 we may take

K1 =
⋂

u∈U (M)

u−1K0u;

that is, we can take the same K1 for both σ1 and σ2. Consequently, by Proposi-
tion 4.17, there exist v′

σi
∈ Vσi

such that

Jσi,w,v,Y (a) =
∫

Y∩(aw)−1UTMK1

ψ
(
u(awy)

)
ψ−1(y)ωσi

(
z(awy)

)
dy + Wv′

σi
(a). (55)

Now ωσ1 = ωσ2 implies that

Jσ1,w,v,Y (a) − Jσ2,w,v,Y (a) = Wv′
σ1

(a) − Wv′
σ2

(a). (56)

Now taking a = a(x) to be e∗
2(x/d) or E∗

2 (x/d) and w to be the w′ described
before, we apply (49) to conclude that

γ (s, η × σ1, ψ)−1 − γ (s, η × σ2, ψ)−1

= g(s, η)
∫

F×

(
Jσ1,w,v,Y (a(x)) − Jσ2,w,v,Y (a(x))

)
η(x) |x|s−n+δ d×x

= g(s, η)
∫

F×

(
Wv′

σ1
(a(x)) − Wv′

σ2
(a(x))

)
η(x) |x|s−n+δ d×x.

However, note that Whittaker functions are smooth, and for �(s) � 0 and η

sufficiently ramified, we have∫
F×

Wv′
σi

(
a(x)

)
η(x)|x|s−n+δ d×x ≡ 0.

Hence, for �(s) � 0, we have γ (s, η ×σ1, ψ)−1 − γ (s, η ×σ2, ψ)−1 ≡ 0, which
then implies γ (s, η × σ1, ψ) = γ (s, η × σ2, ψ) for all s by analytic continuation.
Therefore, γ (s, η × π1, ψ) = γ (s, η × π2, ψ). �

4.4. Stable form of γ (s, η × π,ψ)
We now prove some consequences of Theorem 4.1 that are needed later.
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First, let us compute the stable form of Theorem 4.1 by taking π2 to be an
appropriate principal series representation and computing its right-hand side explicitly.

PROPOSITION 4.18
Let π be an irreducible generic representation of Gn(F ) with central character
ω = ωπ . Let µ1, . . . , µn be n characters of F×. Then for every sufficiently ramified
character η of F× we have

γ (s, η × π,ψ) =
n∏

i=1

γ (s, ηµi, ψ)γ (s, ηωµ−1
i , ψ).

Proof
Set µ0 = ω, and consider the character

µ = (µ0 ◦ e0) ⊗ (µ1 ◦ e1) ⊗ · · · ⊗ (µn ◦ en)

of T(F ) with ei’s as in Section 2.1. Proposition 2.3 implies that the restriction of
the character µ to the center of Gn(F ) is µ0 = ω. Consider the induced representa-
tion Ind(µ) from the Borel subgroup to Gn(F ). Reordering the µi if necessary, we
may assume that it has an irreducible admissible generic subrepresentation π2 (see
Proposition 3.2). Since ωπ2 = µ0 = ω = ωπ , we can apply Theorem 4.1 to get
γ (s, η × π,ψ) = γ (s, η × π2, ψ). The multiplicativity of γ -factors can now be used
to compute the right-hand side to get

γ (s, η × π2, ψ) =
n∏

i=1

γ (s, ηµi, ψ)γ (s, ηωµ−1
i , ψ). (57)

This completes the proof. �

COROLLARY 4.19
Let π be an irreducible generic representation of Gn(F ) with central character
ω = ωπ . Let µ1, . . . , µn be n characters of F× as in Proposition 4.18. Then for every
sufficiently ramified character η of F× we have

L(s, η × π) ≡ 1

and

ε(s, η × π,ψ) =
n∏

i=1

ε(s, ηµi, ψ)ε(s, ηωµ−1
i , ψ).
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Proof
If η is sufficiently ramified, then by [40] we have

L(s, η × π) ≡ 1.

This implies that ε(s, η×π,ψ) = γ (s, η×π,ψ). Moreover, since η is highly ramified,
so is each ηµi and ηωµ−1

i . This implies that L(s, ηµi) ≡ 1 and L(s, ηωµ−1
i ) ≡ 1.

Therefore, ε(s, ηµi, ψ) = γ (s, ηµi, ψ) and ε(s, ηωµ−1
i , ψ) = γ (s, ηωµ−1

i , ψ). The
second statement of the corollary follows from Proposition 4.18. �

5. Analytic properties of global L-functions
In this section we prove the properties of global L-functions which we need in order
to apply the Converse Theorems.

We again let Gn denote either the group GSpin2n+1 or GSpin2n as in Section 2.1.
Let k be a number field, and let A be its ring of adèles. Let S be a finite set of finite places
of k. Let T(S) denote the set of irreducible cuspidal automorphic representations τ of
GLr (A) for 1 ≤ r ≤ N −1 such that τv is unramified for all v ∈ S. If η is a continuous
complex character of k×\A

×, then we let T(S; η) = {τ = τ ′ ⊗ η : τ ′ ∈ T(S)}.
If π is a globally generic cuspidal representation of Gn(A) and τ is a cuspidal

representation of GLr (A) in T(S; η), then σ = τ ⊗ π̃ is a (unitary) cuspidal globally
generic representation of M(A), where M = GLr ×Gn is a Levi subgroup of a standard
parabolic subgroup in Gr+n. The machinery of the Langlands-Shahidi method as
mentioned in Section 3 now applies (see [37], [39]). Recall that

L(s, π × τ ) =
∏
v

L(s, πv × τv), (58)

ε(s, π × τ ) =
∏
v

ε(s, πv × τv, ψv), (59)

where the local factors are as in (5) and (6).

PROPOSITION 5.1
Let S be a nonempty set of finite places of k, and let η be a character of k×\A

×

such that ηv is highly ramified for v ∈ S. Then for all τ ∈ T(S; η), the L-function
L(s, π × τ ) is entire.

Proof
These L-functions are defined via the Langlands-Shahidi method, as we outlined in
Section 3. The proposition is a special case of a more general result, [24, Theorem 2.1]
(see [20] for the original idea). Note that we have proved the necessary assumption of
that theorem, [24, Assumption 1.1], for our cases in Proposition 3.6. �
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The following lemma is an immediate consequence of Proposition 3.6.

LEMMA 5.2
The global normalized intertwining operator N(s, σ,w) is a holomorphic and nonzero
operator for �(s) ≥ 1/2.

PROPOSITION 5.3
For any cuspidal automorphic representation τ of GLr (AF ), 1 ≤ r ≤ 2n − 1, the
L-function L(s, π × τ ) is bounded in vertical strips.

Proof
This follows as a consequence of [15, Theorem 4.1] along the lines of [15, Corol-
lary 4.5], given the fact that we have proved [15, Assumption 2.1] in our Lemma 5.2
for our cases. �

PROPOSITION 5.4
For any cuspidal automorphic representation τ of GLr (AF ), 1 ≤ r ≤ 2n, we have
the functional equation

L(s, π × τ ) = ε(s, π × τ )L(1 − s, π̃ × τ̃ ).

Proof
This is a special case of [39, Theorem 7.7]. �

6. Proof of the main theorem
As mentioned before, we use the following variant of converse theorems of Cogdell
and Piatetski-Shapiro. This version of the Converse Theorems appeared in [7, Sec-
tion 2].

THEOREM 6.1
Let � = ⊗

�v be an irreducible admissible representation of GLN (A) whose central
character ω� is invariant under k× and whose L-function L(s, �) = ∏

v L(s, �v) is
absolutely convergent in some right half-plane. With notation as in Section 5, suppose
that for every τ ∈ T(S; η), we have that:
(1) L(s, � × τ ) and L(s, �̃ × τ̃ ) extend to entire functions of s ∈ C;
(2) L(s, � × τ ) and L(s, �̃ × τ̃ ) are bounded in vertical strips; and
(3) L(s, � × τ ) = ε(s, � × τ )L(1 − s, �̃ × τ̃ ).
Then there exists an automorphic representation �′ of GLN (A) such that �v � �′

v

for all v �∈ S.
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Here, the twisted L- and ε-factors are defined via

L(s, � × τ ) =
∏
v

L(s, �v × τv), ε(s, � × τ ) =
∏
v

ε(s, �v × τv, ψv)

with local factors as in [9].

We can now prove Theorem 1.1.

Proof of Theorem 1.1
We apply Theorem 6.1 with N = 2n. We continue to denote by Gn either GSpin2n+1

or GSpin2n. First, we introduce a candidate for the representation �. Consider π =⊗
πv , and let S be as in the statement of the theorem, that is, a nonempty set of

non-Archimedean places v such that for all finite v �∈ S, both πv and ψv are unramified.

(i): v < ∞ and πv unramified. Choose �v as in the statement of the theorem via the
Frobenius-Hecke (or Satake) parameter. More precisely, since πv is unramified, it is
given by an unramified character χ of the maximal torus T(kv). This means that there
are unramified characters χ0, χ1, . . . , χn of k×

v such that for t ∈ T(kv),

χ(t) = (χ0 ◦ e0)(t)(χ1 ◦ e1)(t) · · · (χn ◦ en)(t), (60)

where ei’s form the basis of the rational characters of the maximal torus of G as in
Section 2.1. The character χ corresponds to an element t̂ in T̂ , the maximal torus
of (the connected component) of the Langlands dual group which is GSp2n(C) or
GSO2n(C), uniquely determined by the equation

χ
(
φ(� )

) = φ(t̂), (61)

where � is a uniformizer of our local field kv and φ ∈ X∗(T) = X∗(T̂ ) (see
[14, (I.2.3.3), page 26]). We make this identification explicit via the correspon-
dence e∗

i ←→ ei for i = 0, . . . , n as in Section 2.1, which gave the duality of
GSpin2n+1 ←→ GSp2n and GSpin2n ←→ GSO2n. Applying (61) with the φ on the
left-hand side replaced with e∗

i and the one on the right-hand side replaced with ei for
i = 0, 1, . . . , n yields

χi(� ) = χ
(
e∗
i (� )

) = ei(t̂), i = 0, 1, . . . , n. (62)

We can now compute the Satake parameter explicitly as an element t̂ in the
maximal torus T̂ of GSp2n(C) or GSO2n(C), as described in (3). If we write our
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unramified characters as χi( ) = | |si
v for si ∈ C and 0 ≤ i ≤ n, then we get

t̂ =



|� |s1

. . .

|� |sn

|� |s0−sn

. . .

|� |s0−s1


. (63)

Hence, �v is the unique unramified constituent of the representation of GL2n(kv)
induced from the character

χ1 ⊗ · · · ⊗ χn ⊗ χ0χ
−1
n ⊗ · · · ⊗ χ0χ

−1
1 (64)

of the kv-points of the standard maximal torus in GL2n.
A crucial point here is what the central characters of πv and �v are. It follows from

Proposition 2.3 that the central character ωπv
= χ0. Moreover, the central character

ω�v
of �v is χn

0 ; hence, we have ω�v
= ωn

πv
.

Furthermore, note that �̃v is the unique unramified constituent of the representa-
tion induced from

χ−1
1 ⊗ · · · ⊗ χ−1

n ⊗ χ−1
0 χn ⊗ · · · ⊗ χ−1

0 χ1.

Therefore, we have �̃v � χ−1
0 ⊗ �v . In other words, �v � �̃v ⊗ ωπv

.

(ii): v|∞. Choose �v as in the statement of Theorem 1.1 (see [30]). To be more
precise, Langlands associates to πv a homomorphism φv from the local Weil group
Wv = Wkv

to the dual group Ĝ which is GSp2n(C) or GSO2n(C) in our cases. Both
of these groups have natural embeddings ι into GL2n(C), and we take �v to be the
irreducible admissible representation of GL2n(kv) associated to 
v = φv ◦ ι in [30].

Again, we want to show that ω�v
= ωn

πv
and �v � �̃v ⊗ ωπv

. To do this,
we use some well-known facts regarding representations of Wv and local Langlands
correspondence for GLn(R) and GLn(C). We refer to [26] for a nice survey of these
results.

First, assume that kv = C. Then Wv = C
× and any irreducible representation of

Wv is one-dimensional and of the form

z �→ [z]�|z|t
C
, � ∈ Z, t ∈ C,

where [z] = z/|z| and |z|C = |z|2.
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The 2n-dimensional representation 
v of Wv can now be written as a di-
rect sum of 2n one-dimensional representations as above. Moreover, 
v(z) =
φv(z), considered as a diagonal matrix in GL2n(C), actually lies, up to conjuga-
tion, in GSp2n(C) or GSO2n(C) as in (3). Therefore, there exist one-dimensional
representations φ0, φ1, . . . , φn as above such that 
v is the direct sum of
φ1, . . . , φn, φ

−1
n φ0, . . . , φ

−1
1 φ0. Now the central characters of �v and πv can be written

as ω�v
(z) = det(
v(z)) and ωπv

(z) = e0(φv(z)), where φv(z) = 
v(z) is considered
as a diagonal (2n × 2n)-matrix as in (3) and e0 is as in (4). In other words, ωπv

= φ0

and ω�v
= φn

0 or ω�v
= ωn

πv
.

Moreover, �̃v corresponds to the 2n-dimensional representation of Wv which is
the direct sum of φ−1

1 , . . . , φ−1
n , φnφ

−1
0 , . . . , φ1φ

−1
0 , implying that the two representa-

tions �v and �̃v ⊗ ωπv
have the same parameters; that is, �v � �̃v ⊗ ωπv

.
Next, assume that kv = R. Then Wv = C

× ∪ jC
× with j 2 = −1 and jzj−1 = z̄

for z ∈ C
×. Here the situation is identical, and the only difference is that Wv also has

two-dimensional irreducible representations. The one-dimensional representations of
Wv can be described as

z �→ |z|t
R
, j �→ 1, t ∈ C,

z �→ |z|t
R
, j �→ −1, t ∈ C,

with |z|R = |z|, and the irreducible two-dimensional representations are of the form

z = reiθ �→
(

r2t ei�θ

r2t e−i�θ

)
, j �→

(
0 (−1)�

1 0

)
,

where t ∈ C and � ≥ 1 is an integer. These correspond, respectively, to representations
1 ⊗ | · |t

R
and sgn ⊗ | · |t

R
of GL1(R) and D� ⊗ | · |t

R
of GL2(R). Here, D� is the

representation of SL±
2 (R) induced from the discrete series (limit of discrete series

when � = 1) representation D+
� on the group SL2(R), the discrete series of lowest

weight � + 1 (see [26, Section 2]).
Notice that again 
v(z) = φv(z) is a diagonal (2n × 2n)-matrix in GSp2n(C) or

GSO2n(C), as in the previous case, while 
v(j ) may have (2 × 2)-blocks as well.
Therefore, we still have ω�v

= ωn
πv

and �v � �̃v ⊗ ωπv
as before.

(iii): v < ∞ and πv ramified. Choose �v to be an arbitrary irreducible admissible
representation of GL2n(kv) with ω�v

= ωn
πv

.
Let � = ⊗

v �v . Then � is an irreducible admissible representation of GL2n(A)
whose central character ω� is equal to ωn

π and hence is invariant under k×. Moreover,
for all v �∈ S, we have that L(s, πv) = L(s, �v) by construction. Hence, LS(s, �) =
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LS(s, π), where

LS(s, �) =
∏
v �∈S

L(s, �v), LS(s, π) =
∏
v �∈S

L(s, πv).

Therefore, L(s, �) = ∏
v L(s, �v) is absolutely convergent in some right half-plane.

Choose η = ⊗
v ηv to be a unitary character of k×\A

× such that ηv is sufficiently
ramified for v ∈ S in order for Theorem 4.1 to hold and such that at one place η2

v is
still ramified. For τ ∈ T(S; η), we claim the following equalities (along with their
analogous equalities for the contragredients):

L(s, �v × τv) = L(s, πv × τv), (65)

ε(s, �v × τv, ψv) = ε(s, πv × τv, ψv). (66)

Here the L- and ε-factors on the left are as in [9], and those on the right are defined
via the Langlands-Shahidi method (see [39], [37]).

To see (65) and (66), we again consider different places separately.

(i): v < ∞ and πv unramified. Let πv be again as in (60) with Satake parameter (63).
Then �v is as in (64). By [17], we have

L(s, �v × τv) =
n∏

i=1

L(s, τv ⊗ χi)L(s, τv ⊗ χ0χ
−1
i ), (67)

L(s, �̃v × τ̃v) =
n∏

i=1

L(s, τ̃v ⊗ χ−1
i )L(s, τ̃v ⊗ χ−1

0 χi),

and

ε(s, �v × τv, ψv) =
n∏

i=1

ε(s, τv ⊗ χi, ψv)ε(s, τv ⊗ χ0χ
−1
i , ψv). (68)

On the other hand, it follows from the inductive property of γ -factors in the
Langlands-Shahidi method (see [39, Theorem 3.5] or [38]) that

γ (s, πv × τv, ψv) =
n∏

i=1

γ (s, τv ⊗ χi, ψv)γ (s, τv ⊗ χ0χ
−1
i , ψv), (69)

just as in (57).
Since τv is generic, it is a full-induced representation from generic essentially

tempered ones. Thus, we can write

τv � Ind(νb1τ1,v ⊗ · · · ⊗ νbpτp,v), (70)
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where each τj,v is a tempered representation of some GLrj
(kv), ν( ) = |det( )|v on

GLrj
(kv), r1 + · · · + rp = r , and the τj,v are in the Langlands order. Moreover, recall

that πv is the unique irreducible unramified subrepresentation of the representation
of Gn(kv) induced from the character χ as in (60) after an appropriate reordering, if
necessary.

Now, by the definition of L-functions (see [39, Section 7]) and their multiplicative
property (see [38, Theorem 5.2]), we have

L(s, πv × τv) =
p∏

j=1

L(s + bj , πv × τj,v)

=
p∏

j=1

n∏
i=1

L(s + bj , τj,v ⊗ χi)L(s + bj , τj,v ⊗ χ0χ
−1
i )

=
n∏

i=1

L(s, τv ⊗ χi)L(s, τv ⊗ χ0χ
−1
i ), (71)

and likewise,

L(s, π̃v × τ̃v) =
n∏

i=1

L(s, τ̃v ⊗ χ−1
i )L(s, τ̃v ⊗ χ−1

0 χi). (72)

Note that [38, Conjecture 5.1], which is a hypothesis of [38, Theorem 5.2], is known
in our cases by [3, Theorem 5.7].

Equations (69), (71), and (72) in turn imply

ε(s, πv × τv, ψv) =
n∏

i=1

ε(s, τv ⊗ χi, ψv)ε(s, τv ⊗ χ0χ
−1
i , ψv). (73)

Note that the product L-functions for GLa×GLb of the Langlands-Shahidi method
and the L-functions of [17] are known to be equal (see [35]). Hence, to see (65) and
(66), all we need is to compare the right-hand sides of (67) and (68) with those of
(71), (72), and (73).

(ii): v |∞. By the local Langlands correspondence (see [30]), the representations πv

and τv are given by admissible homomorphisms

φ : Wv −→
{

GSp2n(C) if Gn = GSpin2n+1,

GSO2n(C) if Gn = GSpin2n,

and

φ′ : Wv −→ GLr (C),
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respectively, and the tensor product

(ι ◦ φ) ⊗ φ′ : Wv −→ GL2nr (C)

is again admissible. Now,

L(s, �v × τv) = L
(
s, (ι ◦ φ) ⊗ φ′) = L(s, πv × τv),

and

ε(s, �v × τv, ψv) = ε
(
s, (ι ◦ φ) ⊗ φ′, ψv

) = ε(s, πv × τv, ψv),

where the middle factors are the local Artin-Weil factors (see [47]) and equalities hold
by [36] (see also [5]).

(iii): v < ∞ and πv ramified. This is where we need the stability of γ -factors. Since
v ∈ S, the representation τv can be written as

τv � Ind(νb1 ⊗ · · · ⊗ νbr ) ⊗ ηv � Ind(ηvν
b1 ⊗ · · · ⊗ ηvν

br ), (74)

where ν(x) = |x|v . Then

L(s, πv × τv) =
r∏

i=1

L(s + bi, πv × ηv), (75)

ε(s, πv × τv, ψv) =
r∏

i=1

ε(s + bi, πv × ηv, ψv). (76)

However, since ηv is sufficiently ramified (depending on πv), Corollary 4.19 implies
that

L(s, πv × ηv) ≡ 1, (77)

ε(s, πv × ηv) =
n∏

i=1

ε(s, ηvχi, ψv)ε(s, ηvχ0µ
−1
i , ψv), (78)

for n arbitrary characters χ1, χ2, . . . , χn, and χ0 = ωπv
. We choose them to be as in

(60).
On the other hand, by either [17] or [39], we have

L(s, �v × τv) =
r∏

i=1

L(s + bi,�v ⊗ ηv), (79)

ε(s, �v × τv, ψv) =
r∏

i=1

ε(s + bi, �v ⊗ ηv, ψv). (80)
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Again, since ηv is highly ramified (depending on �v) and ω�v
= ωn

πv
= χn

0 is equal
to the product of the 2n characters

χ1, . . . , χn, χ0χ
−1
n , . . . , χ0χ

−1
1 ,

[19, Proposition 2.2] implies that

L(s, �v ⊗ ηv) ≡ 1, (81)

ε(s, �v ⊗ ηv) =
n∏

i=1

ε(s, ηvχi, ψv)ε(s, ηvχ0χ
−1
i , ψv). (82)

Comparing equations (75) – (82) now proves (65) and (66) for a non-Archimedean
place v at which πv is ramified.

Now that we have (65) and (66) for all places v of k, we conclude globally that

L(s, � × τ ) = L(s, π × τ ), L(s, �̃ × τ̃ ) = L(s, π̃ × τ̃ ), (83)

ε(s, � × τ ) = ε(s, π × τ ), ε(s, �̃ × τ̃ ) = ε(s, π̃ × τ̃ ), (84)

for all τ ∈ T(S; η). All that remains is to verify the three conditions of Theorem 6.1,
which we can now check for the factors coming from the Langlands-Shahidi method
thanks to (83) and (84). Conditions (1) – (3) of Theorem 6.1 are Propositions 5.1, 5.3,
and 5.4, respectively.

Therefore, there exists an automorphic representation �′ of GL2n(A) such that
for all v �∈ S, we have �v � �′

v . In particular, for all v �∈ S, the local representation
�′

v is related to πv , as prescribed in Theorem 1.1. Moreover, note that for all v �∈ S,
we have ω�′

v
= ω�v

= ωn
πv

. Since ω�′ is a Hecke character that agrees with the Hecke
character ωn

π at all but possibly finitely many places, we conclude that ω�′ = ωn
π .

On the other hand, if v is an Archimedean place or a non-Archimedean place with
v �∈ S, then we proved earlier that

�′
v � �v � �̃v ⊗ ωπv

� �̃′
v ⊗ ωπv

,

which means, in particular, that �′ is nearly equivalent to �̃′ ⊗ ωπ ′ . �

7. Complements

7.1. Local consequences
Our first local result is to show that the local transfers at the unramified places remain
generic. Let us first recall a general result of Jian-Shu Li which we use. The following
is a special case of [32, Theorem 2.2].
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PROPOSITION 7.1 (J.-S. Li; see [32])
Let G be a split connected reductive group over a non-Archimedean local field F ,
and let B = TU be a fixed Borel subgroup, where T is a maximal torus and U
is the unipotent radical of B. Let χ be an unramified character of T(F ), and let
π(χ) be the unique irreducible unramified subquotient of the corresponding principal
series representation. Then π(χ) is generic if and only if for all roots α of (G, T),
we have χ(α∨(� )) �= |� |F . Here α∨ denotes the coroot associated to α, and � is a
uniformizer of F .

PROPOSITION 7.2
Let π = ⊗

v πv be an irreducible globally generic cuspidal automorphic represen-
tation of GSpinm(A), m = 2n + 1 or 2n, and let � = ⊗

v �v be a transfer of π to
GL2n(A) (see Theorem 1.1). If v < ∞ is a place of k with πv unramified, then the
local representation �v is irreducible and unramified, and we have �v � �̃v ⊗ ωπv

.
Moreover, if m = 2n + 1 (see Remark 7.3), then �v is generic (and, hence, a full-
induced principal series representation).

Proof
The representation �v is irreducible and unramified by construction (see (i) in the
proof of Theorem 1.1). We also proved that �v satisfies �v � �̃v ⊗ωπv

in the course
of the proof of Theorem 1.1 in Section 6.

Assume that m = 2n + 1. We now show that �v is generic. Our tool is Proposi-
tion 7.1. Let χ and χ0, . . . , χn be as in (60). Since πv is generic, by Proposition 7.1 we
have that χ(α∨(� )) �= |� |kv

for all roots α. Using the notation of Section 2, the roots
in the odd case m = 2n + 1 are α = ±(ei − ej ), ±(ei + ej ) with 1 ≤ i < j ≤ n, and
±(ei) with 1 ≤ i ≤ n. The corresponding coroots are α∨ = ±(e∗

i −e∗
j ), ±(e∗

i +e∗
j −e∗

0)
with 1 ≤ i < j ≤ n, and ±(2e∗

i − e∗
0) with 1 ≤ i ≤ n, respectively. This implies that

χiχ
−1
j �= | |±1 for i �= j and χiχjχ

−1
0 �= | |±1 for all i, j .

The representation �v was chosen to be the unique irreducible unramified subquo-
tient of the the representation on GL2n(F ) induced from the 2n unramified characters
χ1, . . . , χn, χ0χ

−1
n , . . . , χ0χ

−1
1 as in (64). Therefore, these relations imply that �v is

generic and full-induced. �

Remark 7.3
The above argument does not quite work in the even case, and one can easily construct
local examples, where the transferred local representation is the (unique) unramified
subquotient of an induced representation on GL2n far from the generic constituent.

For example, consider GSpin6 with χ0 = µ2, χ1 = µ(5/2), χ2 = µ(1/2), and
χ3 = µ(−3/2), where µ is a unitary character of F× and µ(r) means µ| |r . Now �v

is the unique unramified constituent of the representation on GL6(F ) induced from
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µ(5/2), µ(3/2), µ(1/2), µ(−1/2), µ(−3/2), and µ(−5/2) and, in fact, is far from
being generic. In this case, there is another constituent that is square-integrable and
hence tempered and generic.

Of course, we do expect �v in the case of m = 2n to be generic as well. However,
this phenomenon is not a purely local one in the case of m = 2n. In fact, it is automatic
that the local transfers at the unramified places are generic once we prove that the
automorphic representation � is induced from unitary cuspidal representations (see
Remark 7.5). As we discuss in Remark 7.5 this will follow from our future work.

7.2. Global consequences
In this section we make some comments about the automorphic representation �

which are almost immediate consequences of our main result, and we leave more
detailed information about � for a future article.

PROPOSITION 7.4
Let π be a globally generic cuspidal automorphic representation of GSpinm(A),
m = 2n + 1 or 2n, and let ω = ωπ . Then there exist a partition (n1, n2, . . . , nt )
of 2n and (not necessarily unitary) cuspidal automorphic representations σ1, . . . , σt

of GLni
(A), i = 1, . . . , t , and a permutation p of {1, . . . , t} with ni = np(i) and

σi � σ̃p(i) ⊗ ω such that any transfer � of π as in Theorem 1.1 is a constituent of
� = Ind(σ1 ⊗ · · · ⊗ σt ), where the induction is, as usual, from the standard parabolic
subgroup of GL2n having Levi subgroup GLn1 × · · · × GLnt

.

Proof
Let � be any transfer of the globally generic cuspidal representation π as in Theorem
1.1. By [29, Proposition 2] there exist a partition p and σi’s, such that � is a constituent
of �. Furthermore, for finite places v, where πv is unramified, we have that �v is the
unique unramified constituent of �v = Ind(σ1,v ⊗ · · · ⊗ σt,v). As part of Theorem
1.1, we showed that � and �̃ ⊗ ω are nearly equivalent (see the definition prior to
Theorem 1.1). Now, �̃⊗ω is a constituent of �̃ ⊗ω = Ind((σ̃1 ⊗ω)⊗· · ·⊗ (σ̃t ⊗ω)),
and by the classification theorem of Jacquet and Shalika (see [18, Theorem 4.4]), we
have that there is a permutation p of {1, . . . , t} such that ni = np(i) and σi � σ̃p(i) ⊗ω.

Now let �′ be another transfer of π as in Theorem 1.1. Then �′ is again a
constituent of some �′ = Ind(σ ′

1 ⊗· · ·⊗σ ′
t ′), where each σ ′

i is a cuspidal automorphic
representation of GLn′

i
(A) and (n′

1, . . . , n
′
t ′) is a partition of 2n. Moreover, for almost

all finite places v, we have that �′
v is the unique unramified constituent of �′

v . On the
other hand, by construction, �v � �′

v for almost all v, and therefore, the classification
theorem of Jacquet and Shalika again implies that t = t ′ and, up to a permutation,
ni = n′

i and σi � σ ′
i for i = 1, . . . , t . Therefore, �′ is also a constituent of �. �



186 ASGARI and SHAHIDI

Remark 7.5
If we write σi = τi ⊗ |det( )|ri for i = 1, 2, . . . , t , with τi unitary cuspidal and ri ∈ R,
then we expect that all ri = 0; that is, � is an isobaric sum of unitary cuspidal
representations. We will take up this issue, which will have important consequences,
in our future work.

7.3. Exterior square transfer
In this section we show that exterior square transfer from GL4 to GL6 due to H. H.
Kim [22] can be deduced as a special case of our main result. However, note that in
this article we are proving only the weak transfer. Once we prove the strong version
of the transfer from GSpin2n to GL2n, again it will have the full content of the results
of [22]. A similar remark also applies to Section 7.4.

PROPOSITION 7.6
Let φ : GSpin6

� GL4 be the (double) covering map (see Proposition 2.2), and
denote by φ̂ the map induced on the connected components of the L-groups:

Then ι ◦ φ̂ = ∧2.

Proof
The group GSO6 is of type D3, and we denote its simple roots by α1, α2, α3 as in
Section 2. Also, GL4 is of type A3 (or D3), and we denote its corresponding simple
roots by α2, α1, α3, respectively, and similarly for other root data (see Section 2). Let
A = diag(a1, a2, a3, a4) ∈ GL4(C). For a fixed appropriate choice of fourth root of
unity and δ = (a1a2a3a4)1/4, we have

ι ◦ φ̂(A) = ι ◦ φ̂

(
δ α2

∨
(a1

δ

)
α1

∨
(a1a2

δ2

)
α3

∨
(a1a2a3

δ3

))
= ι

(
e∗

0(δ4)e∗
1(δ2)e∗

2(δ2)e∗
3(δ2)α2

∨
(a1

δ

)
α1

∨
(a1a2

δ2

)
α3

∨
(a1a2a3

δ3

))
= ι

(
e∗

0(δ4)e∗
1(a1a2)e∗

2(a1a3)e∗
3(a2a3)

)
= diag(a1a2, a1a3, a2a3, a2a4, a1a4, a3a4) =

∧2
A.

Here the third equality follows from Proposition 2.10. �
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As a corollary, we see that our Theorem 1.1 in the special case of m = 2n with n = 3
gives Kim’s exterior square transfer.

PROPOSITION 7.7
If π is an irreducible cuspidal automorphic representation of GL4(A) considered
as a representation of GSpin6(A) via the covering map φ, then the automorphic
representation � of Theorem 1.1 is such that �v = ∧2

πv for almost all v.

7.4. Transfer from GSp4 to GL4

The special case of m = 2n + 1 with n = 2 of our Theorem 1.1 gives the following.

PROPOSITION 7.8
Let π be an irreducible globally generic cuspidal automorphic representation
of GSp4(A). Then π can be transferred to an automorphic representation � of
GL4(A) associated to the embedding GSp4(C) ↪→ GL4(C).

Proof
Notice that GSpin5 is isomorphic, as an algebraic group, to the group GSp4. Now the
corollary is a special case of Theorem 1.1, as mentioned previously. �

In fact, we can prove more in this special case. We refer to our separate work [4]
for more details about this as well as its applications to the generalized Ramanujan
conjecture for GSp4.

Remark 7.9
Proposition 7.8, in particular, proves that the spinor L-function of π is entire. R.
Takloo-Bighash [46] also has a proof of some cases of this result using an integral
representation. His proof differs from our method in that we use the integral represen-
tations only through the Converse Theorems.
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