
Part II. Team Round

1. For an integer B ≥ 2, the base B representation of a number n is a string of “base
B digits” (integers between zero and (B − 1)) d`d`−1 . . . d2d1d0 with the property that
n = d0 ·B0 + d1 ·B1 + d2 ·B2 + · · ·+ d` ·B`.

For example, the number 25 has base ten representation 25 because 25 = 2·101+5·100,
base two representation 11001 because 25 = 1 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20, and
base three representation 221, because 25 = 2 · 32 + 2 · 31 + 1 · 30.

A. Find the base two, base three, base eight, and base sixteen representations of the
number whose base ten representation is 2014. (In base sixteen, the “digits” are
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f .)

B. Prove that, if B ≥ 2, every positive integer has exactly one base B representation.

Solution: To find the base two representation of 2014, we repeatedly divide by 2:

2014 = 2(1007) + 0

1007 = 2(503) + 1

503 = 2(251) + 1

251 = 2(125) + 1

125 = 2(62) + 1

62 = 2(31) + 0

31 = 2(15) + 1

15 = 2(7) + 1

7 = 2(3) + 1

3 = 2(1) + 1

1 = 2(0) + 1.

Plugging each right-hand side into the next left-hand side and expanding, we eventually
get

2014 = 210 ∗ 1 + 29 ∗ 1 + 28 ∗ 1 + 27 ∗ 1 + 26 ∗ 1 + 25 ∗ 0 + 24 ∗ 1 + 23 ∗ 1 + 22 ∗ 1 + 21 ∗ 1 + 0.

The base two representation is obtained by writing the remainders in reverse order of
their appearance: 11111011110 .



For base three, we repeatedly divide by 3:

2014 = 3(671) + 1

671 = 3(223) + 2

223 = 3(74) + 1

74 = 3(24) + 2

24 = 3(8) + 0

8 = 3(2) + 2

2 = 3(0) + 2.

Thus the base three representation of 2014 is 2202121 .

For base eight, we repeatedly divide by 8:

2014 = 8(251) + 6

251 = 8(31) + 3

31 = 8(3) + 7

3 = 8(0) + 3

Thus the base eight representation of 2014 is 3736 .

For base sixteen, we repeatedly divide by 16:

2014 = 16(125) + 14

125 = 16(7) + 13

7 = 16(0) + 7.

Thus the base sixteen representation of 2014 is 7(13)(14), i.e., 7de .

Note that the base eight and sixteen representations can be obtained directly from
the base two representation: 8 = 23, so we group the base two digits by threes to get
11111011110 = (011)(111)(011)(110) = 3736. Similarly 16 = 24, so we group the base
two digits by fours: 11111011110 = (0111)(1101)(1110) = 7de.

To prove that every number has a base B representation, observe that our repeated-
division algorithm above works for every positive integer n and every B ≥ 2.

To prove that the base B representation is unique, suppose that some integer has two
different base B representations. Then there is a smallest such integer; call it n. We
have:



n = d0 + d1B + d2B
2 + · · ·+ drB

r

n = c0 + c1B + c2B
2 + · · ·+ csB

s.

First, observe that if r < s, we may set dr+1 = dr+2 = · · · = ds = 0 (and likewise
if s < r), so we can assume r = s. Second, if cr 6= dr, we could subtract drB

r from
both expressions to obtain two different base B representations of the smaller number
n− drBr. Thus, we may assume that cr 6= dr.

Now, if we subtract the two representations from one another, we obtain

0 = (d0 − c0) + (d1 − c1)B + (d2 − c2)B2 + · · ·+ (dr − cr)Br.

Set fi = di−ci, and observe that −B < fi < B for all i and fr 6= 0. Then, rearranging,
we have

−frBr = f0 + f1B + f2B
2 + · · ·+ fr−1B

r−1.

Taking the absolute value of everything in sight yields

|fr|Br ≤ |f0|+ |f1|B + |f2|B2 · · ·+ |fr−1|Br−1.

Thus we have

Br ≤ |fr|Br

≤ |f0|+ |f1|B + |f2|B2 · · ·+ |fr−1|Br−1

≤ (B − 1) + (B − 1)B + (B − 1)B2 + · · ·+ (B − 1)Br−1

≤ (B − 1)(1 +B +B2 + . . . Br−1)

= Br − 1.

But clearly Br 6≤ Br − 1, so our assumption that some number has two different base
B representations must have been wrong.



2.

A. Partition the set {1, 2} into two disjoint subsets S = {s1} and T = {t1} with the
property s01 = t01.

B. Partition the set {1, 2, 3, 4} into two disjoint subsets S = {s1, s2} and T = {t1, t2}
with the properties

s01 + s02 = t01 + t02
s11 + s12 = t11 + t12.

C. Partition the set {1, 2, 3, 4, 5, 6, 7, 8} into two disjoint subsets S = {s1, s2, s3, s4}
and T = {t1, t2, t3, t4} with the properties

s01 + s02 + s03 + s04 = t01 + t02 + t03 + t04
s11 + s12 + s13 + s14 = t11 + t12 + t13 + t14
s21 + s22 + s23 + s24 = t21 + t22 + t23 + t24.

D. Partition the set {1, . . . , 32} into two disjoint subsets S = {s1, . . . , s16} and T =
{t1, . . . t16} with the properties

s01 + · · ·+ s016 = t01 + · · ·+ t016
s11 + · · ·+ s116 = t11 + · · ·+ t116
s21 + · · ·+ s216 = t21 + · · ·+ t216
s31 + · · ·+ s316 = t31 + · · ·+ t316
s41 + · · ·+ s416 = t41 + · · ·+ t416.

(Just state your answer. You don’t need to prove it.)

Solution: For part (a), the solution is S = {1}, T = {2}, which we verify by checking
10 = 1 and 20 = 1.

For part (b), the solution is S = {1, 4}, T = {2, 3}. Checking, we have 10 + 40 =
20 + 30 = 2, and 11 + 41 = 21 + 31 = 5.

For part (c), the solution is S = {1, 4, 6, 7}, T = {2, 3, 5, 8}. Checking, the zeroeth
powers add to 4, the first powers add to 18, and the squares add to 102.

Before attacking part (d), we need to find a pattern. One thing we might notice is that
the solutions to parts (b) and (c) contain the solutions to parts (a) and (b) as subsets.
Another important observation is that we obtained the solution to (b) by placing 3
and 4 in S and T in the opposite order that 1 and 2 were placed, and then we obtained



the solution to (c) by placing 5 through 8 in the opposite order that we had placed 1
through 4. That is:

S T 1 2

T S 3 4

S T T S 1 2 3 4

T S S T 5 6 7 8

We might try to continue this pattern to partition the numbers up to 16. If we do, we
get

S T T S T S S T 1 2 3 4 5 6 7 8

T S S T S T T S 9 10 11 12 13 14 15 16

Indeed, if we set S = {1, 4, 6, 7, 10, 11, 13, 16} and T = {2, 3, 5, 8, 9, 12, 14, 15}, then
the zeroeth powers of each set add to 8, the first powers add to 68, the squares add to
748, and the cubes add to 9248.

Continuing the pattern, we intuit that the answer to (d) is

S = {1, 4, 6, 7, 10, 11, 13, 16, 18, 19, 21, 24, 25, 28, 30, 31},
T = {2, 3, 5, 8, 9, 12, 14, 15, 17, 20, 22, 23, 26, 27, 29, 32}.

In fact, the zeroeth powers here add to 16, the first powers add to 264, the squares add
to 8536, the cubes add to 139392, and the fourth powers add to 3623048.

These sets S and T are called the Thue-Morse sequence, and the pattern continues:
We can partition the first 64 numbers so that the zeroeth, first, second, third, fourth,
and fifth powers of the elements in each set add to the same thing, and so on.



3. Say that a subset of {1, 2, . . . , n} is clean if it does not contain both a number and its
double. For example, {1, 3, 5, 7, 8} is clean because it does not contain 2, 6, 10, 14, or
16, but {1, 2, 3} is not clean because it contains both 1 and 2.

For a positive integer n, let C(n) be the largest possible size of a clean subset of
{1, 2, . . . , n}. Thus C(1) = 1 ({1} is clean), C(2) = 1 ({1} and {2} are clean, but
{1, 2} isn’t), and C(3) = 2 ({1, 3} is clean).

A. Find C(4), C(6), and C(11).

B. Find C(2014).

Solution: For an odd number k, let Ak = {k, 2k, 4k, 8k, . . . } be the powers of two
times k. Then a set is clean if and only if it doesn’t contain consecutive elements
of any Ak. The easiest way to do this while being as large as possible is to contain
k, 4k, 16k, 64k, . . . but not 2k, 8k, 32k, . . . for every odd number. Thus, the largest
clean subset of {1, 2, . . . , n} is the one consisting of all odd numbers less than or equal
to n, all numbers divisible by 4 but not 8 and less than or equal to n, all numbers
divisible by 16 but not 32 and less than or equal to n, and so on.

For n = 4, this is {1, 3, 4}, so C(4) = 3 .

For n = 6, our set is {1, 3, 4, 5}, so C(6) = 4 .

For n = 11, our set {1, 3, 4, 5, 7, 9, 11}, so C(11) = 7 .

For n = 2014, we don’t want to write out the set explicitly. But we can describe it as
follows:

Start with all the numbers from 1 to 2014. Then remove the even numbers. Then add
back in the multiples of 4. Then remove the multiples of 8. Then add back in the
multiples of 16. Continue until the set stops changing.

Thus the size of our largest clean set is 2014− b2014
2
c+ b2014

4
c − . . . .

Piggybacking on our work from problem 1, we have

C(2014) = 2014− 1007 + 503− 251 + 125− 62 + 31− 15 + 7− 3 + 1 = 1343 .



4. Let (a, b) be a pair of real numbers such that the equations x2 − ax + b = 0 and
x2 − bx+ a = 0 each have two positive integers as roots.

A. Prove that a and b are both positive integers.

B. Find a number C with the property that |a− b| < C.

C. Find all possible pairs (a, b).

Solution: Let r1 and r2 be the roots of x2 − ax + b, and s1 and s2 be the roots of
x2 − bx+ a. By assumption, all four roots are positive integers.

For (a), observe that b = r1r2 and a = s1s2 are each products of positive integers.
Alternatively, a = r1 + r2 and b = s1 + s2 are both sums of positive integers.

For (b), suppose a ≥ b. Then r1 + r2 ≥ r1r2. Since r1 and r2 are positive integers, it
follows that either r1 = r2 = 2 (meaning a = b = 4) or a = b+ 1.

(If instead a ≤ b, we similarly get a = b = 4 or b = a+ 1.)

Consequently, one correct choice for C is 2 .

For (c), there are three possibilities: a = b = 4, a = b+ 1, and a = b− 1.

If a = b = 4, then both equations have a double root at x = 2, which is a positive
integer.

If a = b+1, then the discriminant b2−4a = b2−4b−4 = (b−2)2−8 is a perfect square.
The only perfect squares that differ by 8 are 1 and 9, so we conclude that (b− 2) = 3
and b = 5. In this case x2 − ax+ b = x2 − 6x+ 5 and x2 − bx+ a = x2 − 5x+ 6 both
do have positive integer roots.

If a = b− 1, we similarly conclude that a = 5 and b = 6.

Thus, the solutions are (2, 2), (5, 6), and (6, 5) .

There are other methods once we’ve determined that r1 and r2 differ by at most one.
For example, we can show that the sum and product differ by one only in the cases
(2, 3) and (1, n), then analyze the other quadratic to eliminate most of the (1, n) cases.



5. In the figure below, triangle ABC is inscribed in circle O, and BD is the altitude from
B to AC. If angle ABD has measure θ, find the measure of angle OBC.
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Solution: Observe that angle BAD has measure π
2
− θ, and that it cuts off arc BC on

the far side of the circle. Thus arc BC measures π − 2θ.

Now draw OC.
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Angle BOC also cuts off arc BC, but is at the center of the circle, so it measures π−2θ
as well. Now triangle BOC is isosceles (since OB and OC are both radii), so angles
OBC and OCB are equal.

Thus OBC = 1
2
(π −BOC) = 1

2
(2θ) = θ .


