
Syllabus of PhD Comprehensive Exam:
Numerical Analysis

I. Preparatory Courses:

1. Math 5543 Numerical analysis for differential equations.

2. Math 5553 Numerical analysis for linear algebra.

3. Math 4513 Numerical analysis.

II. Subjects:

1. Numerical methods for Ordinary Differential Equations and their sta-
bilty and convergence theory. These topics are covered in Math 4513
which is a prerequisite for Math 5543.

(a) One-step methods.

1. Explicit: Taylor method (not to be confused with Taylor series),
Runge Kutta.

2. Implicit: Backward Euler, Trapezoidal.

(b) Multi-step methods.

1. Explicit: Adams Bashforth.

2. Implicit: Adams Moulton, Backward differentiation.

(c) Introduction to stability theorey.

2. Numerical methods (finite difference method) for parabolic equations in
one and two spacial dimensions; for hyperbolic equations in one spacial
dimension.
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3. Numerical methods (mostly finite difference method, brief understand-
ing of finite element method) for linear second order elliptic equations
in one and two space dimensions.

4. Theory of consistence, convergence and stability. Lax equivalence the-
orem, von Neumann stability analysis. Error analyses using maximum
principles and energy method.

5. Iterative methods for solving linear algebraic equations. Basic iterative
schemes (Jacobi, Gauss-Seidel, SOR). Convergence analysis.

6. Fundamentals of theory of matrice and vector spaces. Vector and ma-
trix norms.

7. Problem of solving linear systems. Least square problem. Matrix fac-
torizations: SVD, QR, LU, Cholesky, Jordan, Schur, etc. Basic matrix
algorithms: Gram-Schmidt orthogonalizition, Householder triangular-
ization, Gaussian elimination and pivoting.

8. Conditioning and stability theory.

9. Eigenvalue problem and singular value problem. Basic properties of
eigenvalues/eigenvectors. Algorithms for eigen problem: power itera-
tion, inverse iteration, Rayleigh quotient iteration, QR algorithm and
shifts. Hessenberg decomposition.

10. Iterative methods for solving linear systems and eigenvalue problem:
Arnoldi iteration, Lanczos iteration, conjugate gradient method.
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