Geometric and Algebraic Topology

Comprehensive Exam – August 2017

Define your terminology and explain your notation. If you require a standard result, then state it before you use it; otherwise give clear and complete proofs of your claims.

Partial credit will be given for your work. Credit equivalent to five complete problems will guarantee a pass.

Geometric Topology

- 1. Let X and Y be path connected spaces. Let $X \vee Y$ denote the wedge sum of X and Y, i.e. the space obtained by identifying a single point in X with a single point in Y. Let S denote the 2-sphere and P the (real) projective plane.
 - (a) List (up to homeomorphism) all the finite sheeted connected covering spaces of $S \vee P$.
 - (b) List (up to homeomorphism) all the finite sheeted connected covering spaces of $P \lor P$ having at most three sheets.
 - (c) Describe the universal covering space of $P \lor P$.

<u>Hints</u>: Denote the pair consisting of the sphere and one point in it by a circle with a dot on it and an S inside it, as follows: (S)

Denote the pair consisting of the projective plane and one point in it by a circle with a dot on it and a P inside it, as follows: (\mathbf{P})

Then $S \lor P$ is represented by $(S \lor P)$ and $P \lor P$ is represented by $(P \lor P)$

Denote the pair consisting of the sphere and two points in it by a circle with two dots on it and an S inside it, as follows: $\langle S \rangle$

Draw pictures of the covering spaces by hooking these various circles together at the dots.

- 2. Find the fundamental groups of the following spaces. In each case they can be built up from cyclic groups by free products and direct products.
 - (a) The space obtained from two copies of the torus $S^1 \times S^1$ by identifying the simple closed curve $S^1 \times \{1\}$ on the first copy of the torus with the simple closed curve $S^1 \times \{1\}$ on the second copy of the torus. (Regard S^1 as the set of complex numbers with unit norm.)
 - (b) The space obtained from a torus $S^1 \times S^1$ by joining two distinct points a and b on it by an arc which meets the torus only in its two endpoints a and b.
- 3. Let S be the surface obtained by identifying the sides of a 12-gon in the pattern $abcd^{-1}a^{-1}ef^{-1}b^{-1}fe^{-1}c^{-1}d$.
 - (a) Compute the Euler characteristic of S.
 - (b) Determine whether the surface is orientable or non-orientable.
 - (c) Express S as a connected sum of tori or as a connected sum of projective planes. (On this part of the problem you do not need to show your work; just write down the final answer.)

Algebraic Topology (All homology and cohomology groups have \mathbb{Z} coefficients.)

4. Let X be a space formed from a cube $\{(x, y, z) \in \mathbb{R} \mid -1 \le x, y, z \le 1\}$ by identifying opposite sides via the following bijections:

$$\begin{aligned} (x,y,-1) &\leftrightarrow (-x,y,1) \\ (x,-1,z) &\leftrightarrow (x,1,z) \\ (-1,y,z) &\leftrightarrow (1,y,z). \end{aligned}$$

In other words, the faces parallel to the xz and yz planes are glued by the identity map, while the faces parallel to the xy plane are glued with a reflection. Use cellular homology to calculate the homology groups $H_n(X)$ for $n \ge 0$.

- 5. Recall that the degree deg f of a map $f : S^n \to S^n$ is the number d such that for the induced map $f_* : H_n(S^n) \to H_n(S^n)$ is given by $f_*(\alpha) = d\alpha$.
 - (a) Show that the antipodal map $-id: S^n \to S^n$ has degree $(-1)^{n+1}$.
 - (b) Show that any map $f: S^n \to S^n$ with no fixed points is homotopic to the antipodal map.
 - (c) Deduce that any map $f: S^{2n} \to S^{2n}$ has a fixed point.
- 6. The suspension ΣX of a space X is the space obtained from $X \times [-1.1]$ by identifying $X \times \{-1\}$ to a point (the "south pole") and $X \times \{1\}$ to a point (the "north pole"). Thus ΣX is the union of two copies of a cone CX on X along a common copy of X. For example, if X is S^1 , then CXis a disk and ΣX is the union of two disks along their boundaries, so is homeomorphic to S^2 . State and prove a result relating the homology groups of X and ΣX . *Hint: use the Mayer-Vietoris sequence.*