Real Analysis Comprehensive Exam May 2017

Give complete and grammatically correct solutions. If you use a standard theorem, then you must state that theorem and explicitly verify the hypothesis. Lebesgue measure is denoted by m. Complete solutions to four of the six problems will guarantee a pass.

(1) Let X be a set and S a countable infinite subset of X. Define

$$\mathcal{A} := \{ A \subset X : A \subset S \text{ or } A^c \subset S \}.$$

- (a) Show that \mathcal{A} is a σ -algebra.
- (b) Is \mathcal{A} countable or uncountable? Explain your reasoning in a couple of sentences.
- (2) Let $D = \{(x, y) : -1 \le x, y \le 1\}$. Define $f(x, y) = \int \frac{xy}{(x^2 + y^2)^2}, \quad \text{if } (x, y) \ne (0, 0)$

$$f(x,y) = \begin{cases} (x + y) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

Is f an L^1 function on D (with respect to Lebesgue measure)? Justify your answer.

(3) Consider ℓ^2 , the space of sequences of complex numbers (a_n) so that $\sum |a_n|^2 < \infty$. Let λ_n be a sequence of positive real numbers so that $\sum \lambda_n < \infty$. Set

$$\langle a, b \rangle_{\lambda} = \sum \lambda_n a_n \overline{b_n}, \quad a, b \in \ell_2.$$

- (a) Show that $\langle \ , \ \rangle_{\lambda}$ is a well-defined inner product on $\ell^2.$
- (b) Show that ℓ^2 is not complete with respect to the norm $||a||_{\lambda} := (\langle a, a \rangle_{\lambda})^{1/2}$.
- (4) Suppose that $f_n \to f$ in $L^2([0,1], m)$, as $n \to \infty$. Determine whether the following statements are correct (give a proof if the answer is positive and a counterexample if negative):
 - (a) $f_n \to f$ in $L^1([0,1],m)$.
 - (b) $f_n \to f$ a.e. on [0, 1].
 - (c) $f_n \to f$ weakly in $L^2([0,1],m)$.
- (5) Assume f and $f_n, n = 1, 2...$, are in $L^1(\mathbb{R}, m)$ and $\sum_{1}^{\infty} \int_{\mathbb{R}} |f f_n| dm < \infty$. Show that f_n converges to f almost everywhere. (Be sure to state any theorem you use.)
- (6) Suppose that $f:[0,1] \to \mathbb{R}$ is absolutely continuous. Define

$$g(x) := \int_0^1 f(xy) dy$$

Show that $g: [0,1] \to \mathbb{R}$ is absolutely continuous.