Real Analysis Comprehensive Exam Date: August 2016

Give complete and grammatically correct solutions. If you use a standard theorem, then you must state that theorem and explicitly verify the hypothesis. Complete solutions to four of the six problems will guarantee a pass.

(1) Prove that

$$\lim_{n \to \infty} \int_0^1 \sin\left(\frac{x}{n}\right) \frac{n^3}{1 + n^2 x} dx = 1.$$

- (2) Let *m* denote Lebesgue measure on \mathbb{R} , and fix $f \in L^1(\mathbf{R}, m)$.
 - (a) Define the sequence $\{f_n\}$ on **R** by $f_n(x) = f(x n)$. Show that

$$\int_{[0,1]} \sum_{n=1}^{\infty} |f_n| \, dm < \infty.$$

- (b) Show that $\lim_{n\to\infty} f(x-n) = 0$ for a.e. x.
- (3) (a) State appropriate assumptions on a measure space (X, \mathcal{M}, μ) that guarantee the following statement to hold.

(*) "If $\{f_n\}$ is a sequence of measurable functions on X with values in \mathbb{R} so that f_n converges to a measurable function f almost everywhere, then f_n converges to f in μ -measure."

- (b) Prove that (*) holds under your assumptions.
- (c) Show that if your assumptions fail, then (*) may be false.
- (4) Let (X, \mathcal{M}, μ) be a measure space. Assume that $f \in \bigcap_{1 \leq p < \infty} L^p(X, \mu)$. For $1 \leq p < \infty$ define

$$\phi(p) = \log ||f||_p^p.$$

Prove that, for every $p, q \ge 1$ and for every pair (α, β) of positive numbers with $\alpha + \beta = 1$, we have $\phi(p\alpha + q\beta) \le \alpha \ \phi(p) + \beta \phi(q)$.

(5) Let X be a Hilbert space. Let $T: X \to X$ be a linear operator which is symmetric, in the sense that

$$\langle Tx, y \rangle = \langle x, Ty \rangle$$

for all $x, y \in X$. Show that T is bounded. (Hint: If $x_n \to x$ and $Tx_n \to z$ in X, for fixed y in X evaluate $\lim \langle Tx_n, y \rangle$ in two ways.)

(6) Let $\ell_1 = \{(a_n): a_n \in \mathbf{C}, \sum |a_n| < \infty\}$ and $c_0 = \{(b_n): b_n \in \mathbf{C}, \lim b_n = 0\}$, and for $(b_n) \in c_0$ define $||(b_n)|| = \sup |b_n|$.

(a) Let $a = (a_n) \in \ell_1$. Prove that the map $T_a : c_0 \to \mathbb{C}$ defined by $(b_n) \mapsto \sum a_n b_n$ is a bounded linear functional on c_0 . (Include detailed arguments.)

(b) Show that if $T: c_0 \to \mathbf{C}$ is a bounded linear functional, then there exists $a \in \ell_1$ such that $T = T_a$. (Hint: You may use the fact that the subspace of c_0 consisting of sequences with only a finite number of nonzero entries is dense in c_0 .)