Real Analysis Comprehensive Exam Date: May 2012

Give complete and grammatically correct solutions. If you use a standard theorem, then you must state that theorem and explicitly verify the hypothesis. Complete solutions to four of the six problems will guarantee a pass.

- (1) Let $f(x) = \sin(\frac{1}{x}), 0 < x < \infty$.
 - (a) Show that $f \in L^2((0,\infty))$.
 - (b) Prove

$$\lim_{n \to \infty} \int_0^\infty \left| \sin\left(\frac{n}{1+nx}\right) - \sin\left(\frac{1}{x}\right) \right|^2 dx = 0$$

Be sure to justify all steps in your proof.

(2) Determine $\alpha_0 \in \mathbb{R}$ so that if $\alpha < \alpha_0$ then

$$\int_0^1 \frac{|f(x)|}{x^\alpha} \, dx < \infty$$

holds for all $f \in L^3([0,1])$, while if $\alpha > \alpha_0$, then there is an $f \in L^3([0,1])$ so that

$$\int_0^1 \frac{|f(x)|}{x^\alpha} \, dx = \infty$$

- (3) Suppose that A is a measurable subset of [0,1]. Prove that there is a measurable $B \subset A$ so that $m(B) = \frac{1}{2}m(A)$. (Here, m is Lebesgue measure.)
- (4) Let X be a Banach space. Recall that the open balls are the sets of the following form: $B_r(x_0) = \{x \in X; ||x x_0|| < r\}$. Do the following:
 - (a) Prove that the closure of any open ball $B_r(x_0)$ is

$$\overline{B_r(x_0)} = \{x \in X ; ||x - x_0|| \le r\}.$$

(We refer to $\overline{B_r(x_0)}$ as a closed ball.)

- (b) Prove that $\overline{B_r(x_0)} \subset \overline{B_s(y_0)}$ if and only if $||x_0 y_0|| \leq s r$.
- (c) Prove that any decreasing sequence of closed balls has nonempty intersection.
- (5) Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$. Suppose that $g \in L^1(X)$ and there exists $M \in \mathbb{R}$ so that

$$\int_X \phi g \, d\mu \bigg| < M ||\phi||_1,$$

for all simple functions ϕ . Prove that $g \in L^{\infty}(X)$.

(6) Let λ and μ be positive measures on (X, \mathcal{M}) . Define what it means for λ and μ to be mutually singular (written $\lambda \perp \mu$). Define what it means for λ to be absolutely continuous with respect to μ (written $\lambda \ll \mu$). Prove that if $\lambda \perp \mu$ and $\lambda \ll \mu$, then $\lambda = 0$.