Real Analysis Comprehensive Exam January 2011

Give complete and grammatically correct solutions. If you use a standard theorem, then you must state that theorem and explicitly verify the hypothesis. Completely correct solutions to four of the six problems will guarantee a pass. Partial solutions may also be considered on their merit.

(1) Prove the following.

(a)
$$\lim_{n \to \infty} \int_0^1 \sin(\frac{x}{n}) \frac{n^3}{1 + n^2 x} dx = 1$$
 and

(b)
$$\int_0^1 \sin(\frac{x}{n}) \frac{n^3}{1 + n^2 x^2} dx$$
 diverges as $n \to \infty$.

- (2) Let μ be a measure on the measurable space (X, A).
 - (a) Define what it means for a sequence of measurable functions f_n to converge in measure.
 - (b) Prove that if f_n converges in measure to both f and g, then f = g a.e.
- (3) Recall that part of the Lebesgue-Radon-Nikodym Theorem states that if λ is a σ -finite measure and μ is a positive measure, then λ has a Lebesgue decomposition with respect to μ . Show that this statement fails when the hypothesis that λ is σ -finite is omitted. Hint: consider the counting measure λ on \mathbb{R} .
- (4) Suppose (X, \mathcal{M}, ν) is a measure space.
 - (a) Give the definition of $L^{\infty}(X)$ and the norm $||\cdot||_{\infty}$.
 - (b) Prove that when $1 , <math>L^1(X) \cap L^{\infty}(X) \subset L^p(X)$.
 - (c) Prove that $\lim_{n\to\infty} ||f||_p = ||f||_{\infty}$, for $f\in L^1(X)\cap L^{\infty}(X)$.
- (5) Carefully prove that $\frac{\sin(x)}{x^{\alpha}} \in L^1(0,\infty)$ if and only if $1 < \alpha < 2$.
- (6) Consider the space of continuous functions C([0,1]) on the unit interval with the uniform norm. Set $B = \{f \in C([0,1]) | ||f||_u \le 1\}$.
 - (a) True or false: There is a sequence of functions $f_n \in B$ which has no uniformly convergent subsequence.
 - (b) True or false: B is compact in the norm topology.

Give proofs for your answers (and be sure to give the statements of any key theorems you use).